题意

给一个2行n列的矩阵填上黑色和白色,求连通块个数为k个的填色方案数量(mod 998244353)
 
因为只有两行,为n-1列的矩阵增加1列的情况数只有很少,容易想到用 (i,k) 表示 i 列有 k个连通块的矩阵, 但是它在向 i+1 列的矩阵转移时,需要知道最后一列的状态,所以可以用 0, 1, 2, 3表示最后一列为 00, 01, 10,11状态就增加一维变成 (i,k,s),然后就是分析递推关系:
 
 
(i,k,0) 的矩阵,可以由i−1 列的矩阵添加一列 00 得到,当它的结尾为 00, 01, 10, 11时,分别会让连通块个数:不变,不变,不变,+1,所以 (i,k,0)由 (i−1,k,0), (i−1,k,1), (i−1,k,2), (i−1,k−1,3)
 
 
dp[i][k][0]=(dp[i-1][k][0]+dp[i-1][k][1]+dp[i-1][k][2]+dp[i-1][k-1][3])%mod;
 
(i,k,1)的矩阵同理,为i−1列的矩阵添加 01,当结尾为 00,01, 10, 11时,分别会使连通块的个数:+1,不变,+2,+1,所以(i,k,1)由(i−1,k−1,0),(i−1,k,1),(i−1,k−2,2),(i−1,k−1,3)得到:
dp[i][k][1]=(dp[i-1][k-1][0]+dp[i-1][k][1]+dp[i-1][k-2][2]+dp[i-1][k-1][3])%mod;
其他同理:

dp[i][k][2]=(dp[i-1][k-1][0]+dp[i-1][k-2][1]+dp[i-1][k][2]+dp[i-1][k-1][3])%mod;
dp[i][k][3]=(dp[i-1][k-1][0]+dp[i-1][k][1]+dp[i-1][k][2]+dp[i-1][k][3])%mod;

很容易得出初始化:

dp[1][2][2]=1;
dp[1][2][1]=1;
dp[1][1][0]=1;
dp[1][1][3]=1;

答案:

long long ans=0;
for(int i=0 ; i<4 ; i++)
ans=(ans+dp[n][m][i])%mod;
printf("%I64d\n",ans);

#include<bits/stdc++.h>

using namespace std ;

const int mod =  ;

long long  dp[][][];

int main( )
{
int n,m;
scanf("%d%d",&n,&m);
dp[][][]=;
dp[][][]=;
dp[][][]=;
dp[][][]=;
for(int i= ; i<=n ; i++)
{
for(int k= ; k<=min(*i,m) ; k++)
{
dp[i][k][]=(dp[i-][k][]+dp[i-][k][]+dp[i-][k][]+dp[i-][k-][])%mod;
dp[i][k][]=(dp[i-][k-][]+dp[i-][k][]+dp[i-][k-][]+dp[i-][k-][])%mod;
dp[i][k][]=(dp[i-][k-][]+dp[i-][k-][]+dp[i-][k][]+dp[i-][k-][])%mod;
dp[i][k][]=(dp[i-][k-][]+dp[i-][k][]+dp[i-][k][]+dp[i-][k][])%mod;
}
}
long long ans=;
for(int i= ; i< ; i++)
ans=(ans+dp[n][m][i])%mod;
printf("%I64d\n",ans);
return ;
}

CF D Bicolorings的更多相关文章

  1. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  2. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  3. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  4. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  5. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  6. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  7. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  8. CF #376 (Div. 2) C. dfs

    1.CF #376 (Div. 2)    C. Socks       dfs 2.题意:给袜子上色,使n天左右脚袜子都同样颜色. 3.总结:一开始用链表存图,一直TLE test 6 (1)如果需 ...

  9. CF #375 (Div. 2) D. bfs

    1.CF #375 (Div. 2)  D. Lakes in Berland 2.总结:麻烦的bfs,但其实很水.. 3.题意:n*m的陆地与水泽,水泽在边界表示连通海洋.最后要剩k个湖,总要填掉多 ...

随机推荐

  1. react常见面试题

    当你调用 setState 的时候,发生了什么事? 当调用 setState 时,React会做的第一件事情是将传递给 setState 的对象合并到组件的当前状态.这将启动一个称为和解(reconc ...

  2. 6-EasyNetQ之订阅

    一个EasyNetQ订阅者订阅一种消息类型(消息类为.NET 类型).通过调用Subcribe方法一旦对一个类型设置了订阅,一个持久化队列就会在RabbitMQ broker上被创建,这个类型的任何消 ...

  3. queue队列模块

    import Queue myqueue = Queue.Queue(maxsize = 10) Queue.Queue类即是一个队列的同步实现.队列长度可为无限或者有限.可通过Queue的构造函数的 ...

  4. 第5章 使用MUI与H5+构建移动端app

    H5+是JS封装的工具集合,通过H5+我们就可以使用JS的方式去调用到我们手机端上的一些原生的组件. http://dev.dcloud.net.cn/mui/ http://dev.dcloud.n ...

  5. 从公交塞车,看C#多线程问题(转)

    好久没写博客了,可能是因为最近工作太过于压抑的原因吧!有点颓废了.... 而且公司距离住处要坐公交将近40--50分钟(各个原因,纠结中ing...),提前一个半小时起床,居然还能迟到!因为距离公司前 ...

  6. 外部访问docker内部容器centos的http服务

    1.创建容器 docker run -d -it -h dd -p --name bbbbb centos dd 是用户名 --name 后面是容器名字 2.在我们开始安装Nginx及其他所需软件之前 ...

  7. 面试题:struts 值栈 有用

    一. 核心部分 1. [核心试题]完成当天课堂练习 2. [多选题] 阅读如下代码中,下列哪种方式可以在页面正确迭代获取集合中的数据 (ABC) public String add(){ ValueS ...

  8. MSER

    1.注释很全的分析:http://blog.csdn.net/zhaocj/article/details/40742191 2.opencv采用的mser实现方法 * 1. the gray ima ...

  9. BridgePattern(23种设计模式之一)

    生活中的一个例子 就拿汽车在路上行驶的来说.即有小汽车又有公共汽车,它们都不但能在市区中的公路上行驶,也能在高速公路上行驶.这你会发现,对于交通工具(汽车)有不同的类型,然而它们所行驶的环境(路)也在 ...

  10. R: 用 R 查看、管理文件(夹)

    文件管理主要函数: list.files( ): 查看当前目录下文件. file.show( ): 显示文件. file.access( ): 查看文件是否可读可写. file.create( ): ...