算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-001分析步骤
For many programs, developing a mathematical model of running time
reduces to the following steps:
■Develop an input model, including a definition of the problem size.
■ Identify the inner loop.
■ Define a cost model that includes operations in the inner loop.
■Determine the frequency of execution of those operations for the given input.
Doing so might require mathematical analysis—we will consider some examples
in the context of specific fundamental algorithms later in the book.
If a program is defined in terms of multiple methods, we normally consider the
methods separately. As an example, consider our example program of Section 1.1,
BinarySearch .
Binary search. The input model is the array a[] of size N; the inner loop is the
statements in the single while loop; the cost model is the compare operation
(compare the values of two array entries); and the analysis, discussed in Section
1.1 and given in full detail in Proposition B in Section 3.1, shows that the num-
ber of compares is at most lg N ? 1.
Whitelist. The input model is the N numbers in the whitelist and the M numbers
on standard input where we assume M >> N; the inner loop is the statements in
the single while loop; the cost model is the compare operation (inherited from
binary search); and the analysis is immediate given the analysis of binary search—
the number of compares is at most M (lg N ? 1).
Thus, we draw the conclusion that the order of growth of the running time of the
whitelist computation is at most M lg N , subject to the following considerations:
■ If N is small, the input-output cost might dominate.
■The number of compares depends on the input—it lies between ~M and ~M
lg N, depending on how many of the numbers on standard input are in the
whitelist and on how long the binary search takes to find the ones that are (typi-
cally it is ~M lg N ).
■ We are assuming that the cost of Arrays.sort() is small compared to M lg N.
Arrays.sort() implements the mergesort algorithm, and in Section 2.2, we
will see that the order of growth of the running time of mergesort is N log N
(see Proposition G in chapter 2), so this assumption is justified.
Thus, the model supports our hypothesis from Section 1.1 that the binary search algo-
rithm makes the computation feasible when M and N are large. If we double the length
of the standard input stream, then we can expect the running time to double; if we
double the size of the whitelist, then we can expect the running time to increase only
slightly.







算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-001分析步骤的更多相关文章
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-005计测试算法
1. package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; / ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-002如何改进算法
1. package algorithms.analysis14; import algorithms.util.In; import algorithms.util.StdOut; /******* ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-007按位置,找出数组相关最大值
Given an array a[] of N real numbers, design a linear-time algorithm to find the maximum value of a[ ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-006BitonicMax
package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; /*** ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-004计算内存
1. 2. 3.字符串
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-003定理
1. 2. 3. 4. 5. 6.
- 算法Sedgewick第四版-第1章基础-001递归
一. 方法可以调用自己(如果你对递归概念感到奇怪,请完成练习 1.1.16 到练习 1.1.22).例如,下面给出了 BinarySearch 的 rank() 方法的另一种实现.我们会经常使用递归, ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)
一.介绍 1.算法的时间和空间间复杂度 2.特点 Running time is insensitive to input. The process of finding the smallest i ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-007归并排序(自下而上)
一. 1. 2. 3. 二.代码 package algorithms.mergesort22; import algorithms.util.StdIn; import algorithms.uti ...
随机推荐
- 16 Python 递归函数
递归 1.什么是递归 recursion 递归 递归的定义——在一个函数里再调用这个函数本身 在一个函数里再调用这个函数本身,这种魔性的使用函数的方式就叫做递归. 递归的最大深度——997 一个函数在 ...
- Nhibernate系列学习之(四) 数据操作
数据操作,在这里主要介绍INSERT.UPDATE.DELETE.我们在使用NHibernate的时候,如果只是查询数据,不需要改变数据库的值,那么是不需要提交或者回滚到数据库的. 一.INSERT ...
- hdoj-1031-Design T-Shirt
题目链接 /* 两次排序,搞定 */ #include <cstring> #include <iostream> #include <algorithm> usi ...
- 未定义的标示符“RECT”,引入了windows.h头文件也没有用?
我用的是win8的vs2012,RECT应该引入什么头文件?windows.h我第一个就引入了,去windows.h里面搜也搜不到RECT这个关键字,应该引入哪个头文件呢? 真是奇怪啊,是不是还需要什 ...
- B+树和LSM存储引擎代表树和B-树
B+树和LSM比较 https://blog.csdn.net/u013928917/article/details/75912045 在关系型数据库mysql中普遍使用B+树作为索引,在实际中 ...
- docker 存储
[root@docker01 ~]# docker run --name b1 -v /data -it busybox / # ls bin data dev etc home proc root ...
- BZOJ5334: [Tjoi2018]数学计算
BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...
- Python函数-any()
any(iterable) 作用: 如果iterable的任何元素不为0.''.False,all(iterable)返回True.如果iterable为空,返回False. 函数等价于: def a ...
- ubuntu tftp server config
1.安装tftp-server sudo apt-get install tftpd-hpa sudo apt-get install tftp-hpa(如果不需要客户端可以不安装) tftp-hpa ...
- 解决 No module named PyQt5.QtWebKitWidgets
原因:在 PyQt 5.6(+) 版本中, 新增 QtWebEngineWidgets 代替QtWebKitWidgets. 示例代码:#coding: utf-8 import sysfrom Py ...