题目描述

Hja特别有钱,他买了一个×的棋盘,然后Yjq到这个棋盘来搞事。一开始所有格子都是白的,Yjq进行次行操作次列操作,所谓一次操作,是将对应的行列上的所有格子颜色取反。现在Yjq希望搞事之后棋盘上有个黑色格子,问Yjq 有多少种搞事的方法。

数据范围

1≤,,,≤100000,0≤≤×M

 题解:
     ①先不考虑冗余操作(冗余操作定义:对同一个地方进行2次及以上操作)

     ②设对行进行x操作,对列进行y次操作,那么得到等式:

mx+ny-2xy=S ----->枚举x,则y=(S-mx)/(n-2x)

     ③那么行上剩余(R-x)次操作,列上剩余(C-y)次操作。

     ④为了使这些不影响答案,那么必须偶数地添加到任意位置,可以添加的次数为:

                  Timesx=(R-x)/2   Timesy=(C-y)/2

     ⑤剩下的就是组合数问题了,问题转化为:将m个小球放入n个盒子里,盒子可以多放,可以不放。

     ⑥此类组合数问题解法:先讲小球扩大为(n+m)个,那么问题转化为每个盒子至少放一个小球的方案数——转化为将(n+m)个数分成非空的n组的问题(插隔板问题)。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm> using namespace std; #ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif const int maxn=100010;
const int mo=1000000007; int n,m,r,c,ans,v0[maxn],v1[maxn],v2[maxn],v3[maxn],v4[maxn]; long long s; int multi(long long a,int b)
{
a*=b;
if (a>=mo) a%=mo;
return (int)a;
} void inc(int &a,int b)
{
a+=b;
if (a>=mo) a-=mo;
} int mul(int a,int b)
{
int ans=1;
while (b)
{
if (b&1) ans=multi(ans,a);
a=multi(a,a);
b>>=1;
}
return ans;
} int main()
{
//freopen("c.in","r",stdin);
//freopen("c.out","w",stdout); scanf("%d%d%d%d" LL,&n,&m,&r,&c,&s);
v1[0]=1;
for (int a=1;a<=100000;a++)
v0[a]=mul(a,mo-2);
int tmp=1;
for (int a=0;a<=(r>>1);a++)
{
v1[a]=tmp;
tmp=multi(tmp,multi(a+n,v0[a+1]));
}
tmp=1;
for (int a=0;a<=(c>>1);a++)
{
v2[a]=tmp;
tmp=multi(tmp,multi(a+m,v0[a+1]));
}
tmp=1;
for (int a=0;a<=n;a++)
{
v3[a]=tmp;
tmp=multi(tmp,multi(n-a,v0[a+1]));
}
tmp=1;
for (int a=0;a<=m;a++)
{
v4[a]=tmp;
tmp=multi(tmp,multi(m-a,v0[a+1]));
}
for (int a=r&1;a<=min(n,r);a+=2)
if (a*2!=n)
{
if (((s-(long long)a*m))%(n-a*2)) continue;
int b=(int)((s-(long long)a*m)/(n-a*2));
if (b>c || b<0 || ((c-b)&1)) continue;
int nowans=v3[a];
nowans=multi(nowans,v1[(r-a)>>1]);
nowans=multi(nowans,v4[b]);
nowans=multi(nowans,v2[(c-b)>>1]);
inc(ans,nowans);
}
else
{
if ((long long)a*m!=s) continue;
int nowans=v3[a];
nowans=multi(nowans,v1[(r-a)>>1]);
int cnt=0;
for (int b=(c&1);b<=min(r,c);b+=2)
inc(cnt,multi(v4[b],v2[(c-b)>>1]));
inc(ans,multi(ans,cnt));
}
printf("%d\n",ans); return 0;
}//czy020202(代码有点丑)

别害怕我就站在你身边,心在一起爱会让我们勇敢。

别害怕我就站在你身边,看黑夜无法吞没黎明的天。——————汪峰《直到永远》

【CZY选讲·Hja的棋盘】的更多相关文章

  1. 【CZY选讲·棋盘迷宫】

    题目描述 一个N*M的棋盘,’.’表示可以通过,’#’表示不能通过,给出Q个询问,给定起点和终点,判断两点是否联通,如联通输出“Yes”,否则输出“No”. 数据范围 N,M <=500,Q ...

  2. 【CZY选讲·Yjq的棺材】

    题目描述 Yjq想要将一个长为宽为的矩形棺材(棺材表面绝对光滑,所以棺材可以任意的滑动)拖过一个L型墓道. 如图所示,L型墓道两个走廊的宽度分别是和,呈90°,并且走廊的长度远大于. 现在Hja ...

  3. 【CZY选讲·吃东西】

    题目描述 一个神秘的村庄里有4家美食店.这四家店分别有A,B,C,D种不同的美食.LYK想在每一家店都吃其中一种美食.每种美食需要吃的时间可能是不一样的.现在给定第1家店A种不同的美食所需要吃的时间 ...

  4. 【CZY选讲·一道图论神题】

    题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有点权. LYK想把这个图删干净,它的方法是这样的.每次选择一个点,将它删掉,但删这个点是需要代价的 ...

  5. 【CZY选讲·最大子矩阵和】

    题目描述 有一个n*m的矩阵,恰好改变其中一个数变成给定的常数P,使得改变后的这个矩阵的最大子矩阵最大. 数据范围 n,m<=300. 题解:    ①如果没有p,那么二维矩阵和就是一维最长 ...

  6. 【CZY选讲·逆序对】

    题目描述 LYK最近在研究逆序对. 这个问题是这样的. 一开始LYK有一个2^n长度的数组ai. LYK有Q次操作,每次操作都有一个参数k.表示每连续2^k长度作为一个小组.假设 n=4,k= ...

  7. 【CZY选讲·Triangle】

    题目描述 长度为的铁丝,你可以将其分成若干段,并把每段都折成一个三角形.你还需要保证三角形的边长都是正整数并且三角形两两相似,问有多少种不同的分法. 数据范围 1≤≤10^6 题解:      ①相 ...

  8. 【CZY选讲·扩展LCS】

    题目描述 给出两个仅有小写字母组成的字符串str1 和str2,试求出两个串的最长公共子序列. 数据范围 |str1| ⩽ 1000; |str2| ⩽ 10^6 题解:    ①直接进行LCS( ...

  9. 【CZY选讲·次大公因数】

    题目描述 给定n个数ai,求sgcd(a1,a1),sgcd(a1,a2),…,sgcd(a1,an). 其中sgcd(x,y)表示x和y的次大公因数.若不存在次大公因数,sgcd(x,y)=-1 ...

随机推荐

  1. ES6笔记02-箭头函数

    eg1:// ES5 匿名函数 var total = values.reduce(function (a, b) { return a + b; }, 0); // ES6 匿名函数 var tot ...

  2. Fruits【水果】

    Fruits Many of us love July because it's the month when nature's berries and stone fruits are in abu ...

  3. Nginx技术深入剖析

    Nginx软件功能模块说明 核心功能模块(Core functionality):主要对应配置文件的Main区块和Events区块. 标准的http功能模块: 企业 场景常用的Nginx http功能 ...

  4. 开放定址法——线性探测(Linear Probing)

    之前我们所采用的那种方法,也被称之为封闭定址法.每个桶单元里存的都是那些与这个桶地址比如K相冲突的词条.也就是说每个词条应该属于哪个桶所对应的列表,都是在事先已经注定的.经过一个确定的哈希函数,这些绿 ...

  5. [Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  6. HTML中body相关标签-02

    今日内容: 字体标签: h1~h6.<font>.<u>.<b>.<strong><em>.<sup>.<sub> ...

  7. 关于 JS 模块化的最佳实践总结

    模块化开发是 JS 项目开发中的必备技能,它如同面向对象.设计模式一样,可以兼顾提升软件项目的可维护性和开发效率. 模块之间通常以全局对象维系通讯.在小游戏中,GameGlobal 是全局对象.在小程 ...

  8. HttpMessageConverter进行加密解密

    技术交流群: 233513714 使用自定义HttpMessageConverter对返回内容进行加密 今天上午技术群里的一个人问” 如何在 Spring MVC 中统一对返回的 Json 进行加密? ...

  9. bootstrap设计进度条和圆点

    1.设计进度条.文字前面的圆点和图片 2.思路: (1)设计进度条 (a) 进度条有滚动效果,要加上类.active (b)进度条的颜色通过类.progress-bar-success来写,可以写成. ...

  10. [转]ANDROID JNI之JAVA域与c域的互操作

    本文讲述AndroidJava域与C域互操作:Java域调用c域的函数:c域访问Java域的属性和方法:c域生成的对象的保存与使用.重点讲解c域如何访问Java域. 虽然AndroidJNI实现中,c ...