JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has a non-negative integer length sisi. JRY will choose some continuous sections to race (at an unbelievable speed), so there are totally n(n+1)2n(n+1)2 different ways for him to ride. If JRY rides across from the ii-th section to the jj-th section, he would gain j−i+1j−i+1 pleasure. Now JRY wants to know, if he tries all the ways whose length is ss, what's the total pleasure he can get. Please be aware that in the problem, the length of one section could be zero, which means that the length is so trivial that we can regard it as 00.

InputThe first line of the input is a single integer T (T=5)T (T=5), indicating the number of testcases.

For each testcase, the first line contains one integer nn. The second line contains nnnon-negative integers, which mean the length of every section. If we denote the total length of all the sections as ss, we can guarantee that 0≤s≤500000≤s≤50000 and 1≤n≤1000001≤n≤100000. 
OutputFor each testcase, print s+1s+1 lines. The single number in the ii-th line indicates the total pleasure JRY can get if he races all the ways of length i−1i−1. 
Sample Input

2
3
1 2 3
4
0 1 2 3

Sample Output

0
1
1
3
0
2
3
1
3
1
6
0
2
7

数学问题 生成函数 FFT

给一个数列,若有一个数对(i,j)满足sum[i]-sum[j-1]==S,则得到i-(j-1)的收益,求S取0到[数列总和]的每一个值时,各自的全部收益。

神一样的构造解……

看到数据范围这么大,又是求所有方案的累计贡献,普通的方法显然难以奏效。这时候就要考虑生成函数了。

如果把这看成一个多项式问题,两元相乘时次数相加,系数相乘,那么让题目中的"定值"在指数上体现出来。

  ↑ ΣS <=50000,那么让x^i这一位存储S=i时的收益,那么应该计算出所有的 [i-(j-1)]*x^s ,即为路程为s时的收益

那么就要构造能得到  [i-(j-1)]*x^s 形式的项的多项式。

根据sum[i]-sum[j-1]==S可以有:

Σ([ai]*x^sum[i])*Σ(x^-(sum[j-1])   -  Σ(x^sum[i])*Σ([a(j-1)]x^-(sum[j-1])

这样算卷积,指数部分得到sum[i]-sum[j-1],系数部分得到所有的(i-(j-1)),岂不美哉。

S取0的情况可以特判O(n)处理

传说FFT会爆精度,用了Long double以后成功AC

然后试了试NTT取超大模数强行算,对拍过了一些小数据,然而交上去TLE了

↑看到别人的NTT是可以过的,那就是我写的有问题,然而懒得改了先放着

FFT:

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const long double pi=acos(-1.0);
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct com{
long double x,y;
com operator + (const com b){return (com){x+b.x,y+b.y};}
com operator - (const com b){return (com){x-b.x,y-b.y};}
com operator * (const com b){return (com){x*b.x-y*b.y,x*b.y+y*b.x};}
}a[mxn],b[mxn],c[mxn];
int N,l,rev[mxn];
void FFT(com *a,int flag){
int i,j,k;
for(i=;i<N;i++)if(rev[i]>i)swap(a[rev[i]],a[i]);
for(i=;i<N;i<<=){
com wn=(com){cos(pi/i),flag*sin(pi/i)};
for(j=;j<N;j+=(i<<)){
com w=(com){,};
for(k=;k<i;k++,w=w*wn){
com x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;
a[i+j+k]=x-y;
}
}
}
if(flag==-)for(i=;i<N;i++)a[i].x/=N;
return;
}
int n,w[mxn];
LL ans[mxn];
int smm[mxn];
void init(){
n=read();
LL cnt=;
ans[]=;
for(int i=;i<=n;i++){
w[i]=read();
smm[i]=smm[i-]+w[i];
if(!w[i]){//
cnt++;
ans[]+=cnt*(cnt+)/;
}
else cnt=;
}
return;
}
int main(){
int i,j;
int T=read(); while(T--){
init();
// for(i=1;i<=n;i++)printf("%d ",smm[i]);
// printf("\n");
memset(a,,sizeof a);
memset(b,,sizeof b);
memset(c,,sizeof c);
int ed=smm[n];
int m=ed<<;
for(N=,l=;N<=m;N<<=)l++;
for(i=;i<N;i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
//
for(i=;i<=n;i++){
a[smm[i]].x+=i;
b[ed-smm[i-]].x+=;
}
/*
for(i=0;i<=ed;i++)printf("%.2Lf ",a[i].x);
printf("\n");
for(i=0;i<=ed;i++)printf("%.2Lf ",b[i].x);
printf("\n");
*/
FFT(a,);FFT(b,);
for(i=;i<=N;i++)
c[i]=a[i]*b[i];
FFT(c,-);
memset(a,,sizeof a);
memset(b,,sizeof b);
for(i=;i<=n;i++){
a[smm[i]].x+=;
b[ed-smm[i-]].x+=i-;
}
FFT(a,);FFT(b,);
for(i=;i<=N;i++){
a[i]=a[i]*b[i];
}
FFT(a,-);
for(i=;i<=N;i++)c[i]=c[i]-a[i];
printf("%lld\n",ans[]);
for(i=;i<=ed;i++){
printf("%lld\n",(LL)(c[i+ed].x+0.5));
}
}
return ;
}

TLE的NTT

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
//const LL P=(1LL<<47)*7*4451+1;
const LL P=*(<<)+;
//const LL mod=479*(1<<21)+1;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
LL a[mxn],b[mxn],c[mxn];
int N,l;
LL mul(LL x,LL y) {
LL res=;
while(y){
if(y&)res=(res+x)%P;
x=(x<<)%P;
y>>=;
}
return res;
}
LL ksm(LL a,LL k){
LL res=;
while(k){
if(k&)res=mul(res,a);
a=mul(a,a);
k>>=;
}
return res;
}
int rev[mxn];
void NTT(LL *a,int flag){
int i,j,k;
for(i=;i<N;i++)if(rev[i]>i)swap(a[rev[i]],a[i]);
for(i=;i<N;i<<=){
LL gn=ksm(,(P-)/(i<<));
int p=i<<;
for(j=;j<N;j+=p){
LL g=;
for(k=;k<i;k++,g=mul(g,gn)){
LL x=a[j+k],y=mul(g,a[j+k+i]);
a[j+k]=(x+y)%P;
a[i+j+k]=(x-y+P)%P;
}
}
}
if(flag==-){
reverse(a+,a+N);
LL inv=ksm(N,P-);
for(i=;i<N;i++)a[i]=mul(a[i],inv)%P;
}
return;
}
int n,w[mxn];
LL ans[mxn];
int smm[mxn];
void init(){
n=read();
LL cnt=;
ans[]=;
for(int i=;i<=n;i++){
w[i]=read();
smm[i]=smm[i-]+w[i];
if(!w[i]){//
cnt++;
ans[]+=cnt*(cnt+)/;
}
else cnt=;
}
return;
}
int main(){
int i,j;
int T=read();
while(T--){
init();
memset(a,,sizeof a);
memset(b,,sizeof b);
memset(c,,sizeof c);
int ed=smm[n];
int m=ed<<;
for(N=,l=;N<=m;N<<=)l++;
for(i=;i<N;i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
//
for(i=;i<=n;i++){
a[smm[i]]+=i;
b[ed-smm[i-]]+=;
} NTT(a,);NTT(b,);
// for(i=0;i<=N;i++)printf("%lld ",a[i]);printf("\n");
for(i=;i<=N;i++)
c[i]=mul(a[i],b[i])%P;
NTT(c,-);
memset(a,,sizeof a);
memset(b,,sizeof b);
for(i=;i<=n;i++){
a[smm[i]]+=;
b[ed-smm[i-]]+=i-;
}
NTT(a,);NTT(b,);
for(i=;i<=N;i++){
a[i]=mul(a[i],b[i])%P;
}
NTT(a,-);
for(i=;i<=N;i++)c[i]=(c[i]-a[i]+P)%P;
printf("%lld\n",ans[]);
for(i=;i<=ed;i++){
printf("%lld\n",c[i+ed]);
}
}
return ;
}

HDU5307 He is Flying的更多相关文章

  1. [hdu5307] He is Flying [FFT+数学推导]

    题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left( ...

  2. HDU-5307 He is Flying (FFT)

    Problem DescriptionJRY wants to drag racing along a long road. There are n sections on the road, the ...

  3. $FFT/NTT/FWT$题单&简要题解

    打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...

  4. PDF 生成插件 flying saucer 和 iText

    最近的项目中遇到了需求,用户在页面点击下载,将页面以PDF格式下载完成供用户浏览,所以上网找了下实现方案. 在Java世界,要想生成PDF,方案不少,所以简单做一个小结吧. 在此之前,先来勾画一下我心 ...

  5. hdu---(1800)Flying to the Mars(trie树)

    Flying to the Mars Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  7. HDU 5515 Game of Flying Circus 二分

    Game of Flying Circus Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem ...

  8. about building flying sauser

    download flying sauser: unzip flyingsaucer-master.zip cd flyingsaucer-master/ mvn install

  9. hdu 1800 Flying to the Mars

    Flying to the Mars 题意:找出题给的最少的递增序列(严格递增)的个数,其中序列中每个数字不多于30位:序列长度不长于3000: input: 4 (n) 10 20 30 04 ou ...

随机推荐

  1. python__高级 : Property 的使用

    一个类中,假如一个私有属性,有两个方法,一个是getNum , 一个是setNum 它,那么可以用 Property 来使这两个方法结合一下,比如这样用  num = property(getNum, ...

  2. php 变量的8类类型

    整形,布尔,浮点形,字符串,数组,资源,对象和null php数据类型之查看和判断数据类型 php数据类型之自动转换和强制转换

  3. 26-dotnet watch run 和attach到进程调试

    1-打开vscode, 按下Ctrl+`,打开命令行窗口 创建一个donet core mvc项目 2-打开刚刚创建的文件夹 3-输入 dotnet run 访问网站 4 -F5键即可调试 5-更改代 ...

  4. MVN settings.xml

    <?xml version="1.0" encoding="UTF-8"?> <!-- Licensed to the Apache Soft ...

  5. Spring.net Ioc 依赖注入

    控制反转 (Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. 控制反转一般分为两种类型,依赖注 ...

  6. 2139: road

    把a[i], b[i]分开来排序 对应位置上的点连边 感性理解这是最小的 会连出若干个环 要使得若干个环连成大环 令a[i]向b[i - 1] 连边 易证一定能使图联通 感性理解这也是最小的 #inc ...

  7. P1133 教主的花园

    P1133 教主的花园 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教 ...

  8. Android stadio 模板 liveTemplate不管用

    今天自己弄了模板,发现不生效.后来才知道要在下面设置在哪里应用:如下图: Android satdio 制作自己的todo 有时候,别人都使用todo,使得自己个人的todo不好用了.那么怎么弄?自己 ...

  9. powershell设置SS代理

    $env:HTTPS_PROXY="http://127.0.0.1:1080" $env:HTTP_PROXY="http://127.0.0.1:1080"

  10. wget 下载页面下所有文件

    先介绍几个参数:-c 断点续传(备注:使用断点续传要求服务器支持断点续传),-r 递归下载(目录下的所有文件,包括子目录),-np 递归下载不搜索上层目录,-k 把绝对链接转为相对链接,这样下载之后的 ...