codeforces 553B B. Kyoya and Permutation(找规律)
题目链接:
2 seconds
256 megabytes
standard input
standard output
Let's define the permutation of length n as an array p = [p1, p2, ..., pn] consisting of n distinct integers from range from 1 to n. We say that this permutation maps value 1 into the value p1, value 2 into the value p2 and so on.
Kyota Ootori has just learned about cyclic representation of a permutation. A cycle is a sequence of numbers such that each element of this sequence is being mapped into the next element of this sequence (and the last element of the cycle is being mapped into the first element of the cycle). The cyclic representation is a representation of p as a collection of cycles forming p. For example, permutationp = [4, 1, 6, 2, 5, 3] has a cyclic representation that looks like (142)(36)(5) because 1 is replaced by 4, 4 is replaced by 2, 2 is replaced by 1, 3 and 6 are swapped, and 5 remains in place.
Permutation may have several cyclic representations, so Kyoya defines the standard cyclic representation of a permutation as follows. First, reorder the elements within each cycle so the largest element is first. Then, reorder all of the cycles so they are sorted by their first element. For our example above, the standard cyclic representation of [4, 1, 6, 2, 5, 3] is (421)(5)(63).
Now, Kyoya notices that if we drop the parenthesis in the standard cyclic representation, we get another permutation! For instance,[4, 1, 6, 2, 5, 3] will become [4, 2, 1, 5, 6, 3].
Kyoya notices that some permutations don't change after applying operation described above at all. He wrote all permutations of lengthn that do not change in a list in lexicographic order. Unfortunately, his friend Tamaki Suoh lost this list. Kyoya wishes to reproduce the list and he needs your help. Given the integers n and k, print the permutation that was k-th on Kyoya's list.
The first line will contain two integers n, k (1 ≤ n ≤ 50, 1 ≤ k ≤ min{1018, l} where l is the length of the Kyoya's list).
Print n space-separated integers, representing the permutation that is the answer for the question.
4 3
1 3 2 4
10 1
1 2 3 4 5 6 7 8 9 10 题意: 1到n的一个排列,问经过上面的那两步操作后得到的序列不变,把这些序列按字典序从小到大排列,问第k个是什么; 思路: 可以发现所有的排列要满足条件都是相邻的进行交换,长度为n的满足要求的个数为dp[n]=dp[n-1]+dp[n-2];
现在对于第i位要看是否需要交换,如果不交换,说明后面长为n-i的序列的个数dp[n-i]>=k,否则这一位就要交换了,交换了那么k的大小也要变化了;就这样确定每一位上的数; AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=3e6+10;
const int maxn=1e3+20;
const double eps=1e-12; LL a[52],k;
int n,ans[52];
int main()
{
read(n);read(k);
a[0]=a[1]=1;a[2]=2;
for(int i=3;i<=n;i++)a[i]=a[i-1]+a[i-2];
int pos=1;
while(pos<=n)
{
if(k<=a[n-pos])
{
ans[pos]=pos;
pos++;
}
else
{
ans[pos]=pos+1;
ans[pos+1]=pos;
k-=a[n-pos];
pos+=2;
}
}
for(int i=1;i<=n;i++)printf("%d ",ans[i]);
return 0;
}
codeforces 553B B. Kyoya and Permutation(找规律)的更多相关文章
- codeforces 622D D. Optimal Number Permutation(找规律)
D. Optimal Number Permutation time limit per test 1 second memory limit per test 256 megabytes input ...
- Codeforces Gym 100114 A. Hanoi tower 找规律
A. Hanoi tower Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descript ...
- codeforces Gym 100418D BOPC 打表找规律,求逆元
BOPCTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- Codeforces Round #242 (Div. 2)C(找规律,异或运算)
一看就是找规律的题.只要熟悉异或的性质,可以秒杀. 为了防止忘记异或的规则,可以把异或理解为半加运算:其运算法则相当于不带进位的二进制加法. 一些性质如下: 交换律: 结合律: 恒等律: 归零律: 典 ...
- Codeforces Gym 100015A Another Rock-Paper-Scissors Problem 找规律
Another Rock-Paper-Scissors Problem 题目连接: http://codeforces.com/gym/100015/attachments Description S ...
- Codeforces H. Malek Dance Club(找规律)
题目描述: Malek Dance Club time limit per test 1 second memory limit per test 256 megabytes input standa ...
- [CodeForces - 848B] Rooter's Song 思维 找规律
大致题意: 有一个W*H的长方形,有n个人,分别站在X轴或Y轴,并沿直线向对面走,第i个人在ti的时刻出发,如果第i个人与第j个人相撞了 那么则交换两个人的运动方向,直到走到长方形边界停止,问最后每个 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Tree and Permutation 找规律+求任意两点的最短路
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- 【Codeforces 707C】Pythagorean Triples(找规律)
一边长为a的直角三角形,a^2=c^2-b^2.可以发现1.4.9.16.25依次差3.5.7.9...,所以任何一条长度为奇数的边a,a^2还是奇数,那么c=a^2/2,b=c+1.我们还可以发现, ...
随机推荐
- 基于react-native android的新闻app的开发
使用平台:android 代码获取地址:https://github.com/wuwanyu/ReactNative-Android-MovieDemo 项目展示: 结构图: SpalashScree ...
- C语言基础知识【函数】
C 函数1.函数是一组一起执行一个任务的语句.每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数.您可以把代码划分到不同的函数中.如何划分代码到不同的函数 ...
- 首页底部菜单FragmentTabHost的使用
一般现在的菜单都是底部FragmentTabHost,切换Fragment来实现的,今天我们就使用这个来看看如何实现的 首先是布局文件 <?xml version="1.0" ...
- Black And White(DFS+剪枝)
Black And White Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others ...
- jquery 访问后台方法 并且获取后方法返回的数据
说明: 1.开发环境 asp.net MVC4 c#语言. 后台方法位于控制器中ProController.cs中 后台方法如下: public string GetNumber() { string ...
- 九度OJ 1255:骰子点数概率 (递归、DP)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:316 解决:29 题目描述: 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S.输入n,打印出S的所有可能的值出现的概率. 输入: 输入包 ...
- Go 学习笔记
官网: https://golang.org/ 环境: $GOROOT: GOROOT环境变量指定了Go的安装目录. $GOPATH: GOPATH 环境变量指定workspace的目录. 命令行: ...
- php记录百度等搜索引擎蜘蛛的来访记录
<?php function is_robot() { $useragent = strtolower($_SERVER['HTTP_USER_AGENT']); if (strpos($use ...
- socket编程python+c
python版: server: def socket_loop_server_function(): HOST = '192.168.56.1' PORT = 21567 sk = socket.s ...
- centos 安装composer PHP项目部署,Composer install Do not run Composer as root/super user!
使用composer 安装项目的时候遇到了 Composer install Do not run Composer as root/super user! 在博客https://segmentfau ...