Get Many Persimmon Trees
Time Limit:1000MS    Memory Limit:30000KB    64bit IO Format:%I64d
& %I64u

Description

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the
domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field.
Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have
as many persimmon trees as possible in the estate given by the lord.

For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded
by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted
line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.



Figure 1: Examples of Rectangular Estates


Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format.



N

W H

x1 y1

x2 y2

...

xN yN

S T



N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <=
N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees
are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.



The end of the input is indicated by a line that solely contains a zero.

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

大致题意:国王所在的领地有W*H个点,当中n个点处有树, 如今领地上最多同意圈(当然能够少于)大小为S*T的矩形,问最多可圈中多少棵树?

解题思路:枚举起点,用二维树状数组求解。

枚举起点时要注意从行列从S和T開始。直到W和H为止。

用二维树状数组时。要注意update()每次更新时,c[ ] 加的是1。

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 102;
int n, w, h, s, t;
int c[maxn][maxn]; int lowbit(int x){ return x&(-x); } void update(int x,int y){
for(int i=x; i<maxn; i+=lowbit(i))
for(int j=y; j<maxn; j+=lowbit(j))
c[i][j] ++;
} long long sum(int x, int y){
long long ans = 0;
for(int i=x; i>0; i-=lowbit(i))
for(int j=y; j>0; j-=lowbit(j))
ans += c[i][j];
return ans;
} int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
int x, y;
while(~scanf("%d", &n) && n){
scanf("%d%d", &w, &h);
memset(c,0,sizeof(c));
for(int i=1; i<=n; i++){
scanf("%d%d", &x, &y);
update(x, y);
}
scanf("%d%d", &s, &t);
long long ans = 0;
for(int i=s; i<=w; i++)      //枚举起点
for(int j=t; j<=h; j++)
ans = max(ans, sum(i, j) - sum(i-s, j) - sum(i, j-t) + sum(i-s, j-t));    //树状数组求区域和
printf("%lld\n", ans);
}
return 0;
}

POJ 2029 Get Many Persimmon Trees (二维树状数组)的更多相关文章

  1. POJ2029:Get Many Persimmon Trees(二维树状数组)

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  2. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  3. POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)

    题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...

  4. POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】

    <题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...

  5. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  6. Get Many Persimmon Trees_枚举&&二维树状数组

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  7. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  8. POJ 2155 Matrix【二维树状数组+YY(区间计数)】

    题目链接:http://poj.org/problem?id=2155 Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  9. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

随机推荐

  1. Handler 源码分析

    Handler用法: 无参 Handler 构造函数实例化一个 Handler 类型的全局变量,并重写其 handleMessage 方法,在某一方法内调用 Handler 的 sendEmptyMe ...

  2. 结构型设计模式之享元模式(Flyweight)

    结构 意图 运用共享技术有效地支持大量细粒度的对象. 适用性 一个应用程序使用了大量的对象. 完全由于使用大量的对象,造成很大的存储开销. 对象的大多数状态都可变为外部状态. 如果删除对象的外部状态, ...

  3. MVC学习__修改工程端口号

    有时候,我们会希望修改工程默认生成的端口号,方法如下:

  4. 跳石头(NOIP2015) (二分查找)

    原题传送门 好久没更了..昨天去学zkw线段树,被zxyer狠狠地D了一顿.. 来补坑.. 这是一道很奇特的题目. 根据题目可以看出这道题有二分题具有的性质.. 不懂二分性质的可以看我以前的博客 传送 ...

  5. Xdebug安装对应版本与配置

    Xdebug安装地址https://xdebug.org/download.php,进入下载页面后点击custom installation instructions,可以找到适合的Xdebug版本. ...

  6. Linux查看进程堆栈信息命令

    jps -lvm #查看进程IDjstack -l <进程ID> # 查看进程堆栈信息

  7. windows 修改xhsell安全加密配置

    由于xhsell旧版的与新版的有差别,导致新版的不能用旧版的xsh文件 1.将xshell升级到最新版本2.安装sed与grep到C:\Program Files (x86)\GnuWin323.将b ...

  8. Centos 多线程下载工具-axel

    32位CentOS执行下面命令: wget -c http://pkgs.repoforge.org/axel/axel-2.4-1.el5.rf.i386.rpm rpm -ivh axel-2.4 ...

  9. BZOJ1588 [HNOI2002]营业额统计 splay模板

    1588: [HNOI2002]营业额统计 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 16189  Solved: 6482 [Submit][S ...

  10. VS217下载码云服务器项目

    按下图打开VS2017团队资源管理器的管理连接 ,本地GIT存储库下面输入远程GIT存储库URL地址和保存到本地的地址即可将远程项目下载到本地,下载完成后,关闭VS2017重新打开这个项目就可以进行源 ...