Get Many Persimmon Trees
Time Limit:1000MS    Memory Limit:30000KB    64bit IO Format:%I64d
& %I64u

Description

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the
domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field.
Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have
as many persimmon trees as possible in the estate given by the lord.

For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded
by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted
line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.



Figure 1: Examples of Rectangular Estates


Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format.



N

W H

x1 y1

x2 y2

...

xN yN

S T



N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <=
N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees
are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.



The end of the input is indicated by a line that solely contains a zero.

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

大致题意:国王所在的领地有W*H个点,当中n个点处有树, 如今领地上最多同意圈(当然能够少于)大小为S*T的矩形,问最多可圈中多少棵树?

解题思路:枚举起点,用二维树状数组求解。

枚举起点时要注意从行列从S和T開始。直到W和H为止。

用二维树状数组时。要注意update()每次更新时,c[ ] 加的是1。

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 102;
int n, w, h, s, t;
int c[maxn][maxn]; int lowbit(int x){ return x&(-x); } void update(int x,int y){
for(int i=x; i<maxn; i+=lowbit(i))
for(int j=y; j<maxn; j+=lowbit(j))
c[i][j] ++;
} long long sum(int x, int y){
long long ans = 0;
for(int i=x; i>0; i-=lowbit(i))
for(int j=y; j>0; j-=lowbit(j))
ans += c[i][j];
return ans;
} int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
int x, y;
while(~scanf("%d", &n) && n){
scanf("%d%d", &w, &h);
memset(c,0,sizeof(c));
for(int i=1; i<=n; i++){
scanf("%d%d", &x, &y);
update(x, y);
}
scanf("%d%d", &s, &t);
long long ans = 0;
for(int i=s; i<=w; i++)      //枚举起点
for(int j=t; j<=h; j++)
ans = max(ans, sum(i, j) - sum(i-s, j) - sum(i, j-t) + sum(i-s, j-t));    //树状数组求区域和
printf("%lld\n", ans);
}
return 0;
}

POJ 2029 Get Many Persimmon Trees (二维树状数组)的更多相关文章

  1. POJ2029:Get Many Persimmon Trees(二维树状数组)

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  2. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  3. POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)

    题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...

  4. POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】

    <题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...

  5. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  6. Get Many Persimmon Trees_枚举&&二维树状数组

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  7. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  8. POJ 2155 Matrix【二维树状数组+YY(区间计数)】

    题目链接:http://poj.org/problem?id=2155 Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  9. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

随机推荐

  1. Sql Server 事务/回滚

    ,'test1','test1') commit tran t1  ---提交事务 功能:实现begin tran 和commit tran之间的语句,任一如果出现错误,所有都不执 事务不是有错就回滚 ...

  2. 汕头市队赛 SRM10 T3 数学上来先打表

    数学上来先打表 SRM 10 描述 给出 n个点(不同点之间有区别),求出满足下列条件的连边(双向边)方案:1.每条边连接两个不同的点,每两个点之间至多有一条边2.不存在三个点a,b,c使三个点间两两 ...

  3. 【CF1020D】The hat(交互,二分)

    题意:有n个人围成一个圈,n为偶数,每个人有一个数字a[i],保证相邻两个人的数字差为1 最多可以询问60次,要求获得一个i使得a[i]=a[i+n/2] n<=1e5,abs(a[i])< ...

  4. 跳石头(NOIP2015) (二分查找)

    原题传送门 好久没更了..昨天去学zkw线段树,被zxyer狠狠地D了一顿.. 来补坑.. 这是一道很奇特的题目. 根据题目可以看出这道题有二分题具有的性质.. 不懂二分性质的可以看我以前的博客 传送 ...

  5. DNS 资源记录解释

    ;SOA授权的开始;;SOA或授权的开始记录用来表示区域的启动;每个区域必须只有一个SOA记录;从名字服务器,在不能和主服务器通信的情况下,将提供12小时DNS服务, 在指定的时间后停止为那个区域提供 ...

  6. ui_modules和ui_method

    ## 06ui.py #coding:utf-8 import tornado.httpserver import tornado.ioloop import tornado.options impo ...

  7. 通过hover修改其他元素

    hover,我们都知道,是监听组件“悬停状态”的一个伪类. 我们一般通过hover来修改组件的背景什么的,很少涉及到太复杂的操作.也就是说我们一般只是对加了hover伪类的元素自身的样式进行改变,比如 ...

  8. vue.js基本使用

    #原创,转载请留言联系 什么是vue.js Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的渐进式框架. Vue 只关注视图层, 采用自底向上增量开发的设计. Vue 的目 ...

  9. Appium+python自动化4-元素定位uiautomatorviewer【转载】

    前言 环境搭建好了,下一步元素定位,元素定位本篇主要介绍如何使用uiautomatorviewer,通过定位到页面上的元素,然后进行相应的点击等操作. uiautomatorviewer是androi ...

  10. python接口自动化1-发送get请求【转载】

    本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/python%E6%8E%A5%E5%8F%A3%E8%87%AA%E5%8A%A8%E ...