原文地址:http://blog.csdn.net/jimi36/article/details/7792103

Bezier曲线的原理

Bezier曲线是应用于二维图形的曲线。曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状。

一次Bezier曲线公式:

一次Bezier曲线是由P0至P1的连续点,描述的一条线段

二次Bezier曲线公式:

二次Bezier曲线是 P0至P1 的连续点Q0和P1至P2 的连续点Q1 组成的线段上的连续点B(t),描述一条抛物线。

三次Bezier曲线公式:

二次Bezier曲线的实现

  1. #ifndef CBEZIERCURVE_H_
  2. #define CBEZIERCURVE_H_
  3. #include <vector>
  4. class CBezierCurve
  5. {
  6. public:
  7. CBezierCurve();
  8. ~CBezierCurve();
  9. void SetCtrlPoint(POINT& stPt);
  10. bool CreateCurve();
  11. void Draw(CDC* pDC);
  12. private:
  13. // 主要算法,计算曲线各个点坐标
  14. void CalCurvePoint(float t, POINT& stPt);
  15. private:
  16. // 顶点和控制点数组
  17. std::vector<POINT> m_vecCtrlPt;
  18. // 曲线上各点坐标数组
  19. std::vector<POINT> m_vecCurvePt;
  20. };
  21. #endif
[html] view
plain
copy

  1. #include <math.h>
  2. #include "BezierCurve.h"
  3. CBezierCurve::CBezierCurve()
  4. {
  5. }
  6. CBezierCurve::~CBezierCurve()
  7. {
  8. }
  9. void CBezierCurve::SetCtrlPoint(POINT& stPt)
  10. {
  11. m_vecCtrlPt.push_back(stPt);
  12. }
  13. void CBezierCurve::CreateCurve()
  14. {
  15. // 确保是二次曲线,2个顶点一个控制点
  16. assert(m_vecCtrlPt.size() == 3);
  17. // t的增量, 可以通过setp大小确定需要保存的曲线上点的个数
  18. float step = 0.01;
  19. for (float t = 0.0; t <= 1.0; t += step)
  20. {
  21. POINT stPt;
  22. CalCurvePoint(t, stPt);
  23. m_vecCurvePt.push_back(stPt);
  24. }
  25. }
  26. void CBezierCurve::Draw(CDC* pDC)
  27. {
  28. // 画出曲线上个点,若不连续可以用直线连接各点
  29. int nCount = m_vecCurvePt.size();
  30. for (int i = 0; i < nCount; ++i)
  31. {
  32. pDC->SetPixel(m_vecCurvePt[i], 0x000000);
  33. }
  34. }
  35. void CBezierCurve::CalCurvePoint(float t, POINT& stPt)
  36. {
  37. // 确保是二次曲线,2个顶点一个控制点
  38. assert(m_vecCtrlPt.size() == 3);
  39. // 计算曲线点坐标,此为2次算法,改变此处可以实现多次曲线
  40. float x = (float)m_vecCtrlPt[0].x * pow(1 - t, 2)   +
  41. (float)m_vecCtrlPt[1].x * t * (1 - t) * 2 +
  42. (float)m_vecCtrlPt[2].x * pow(t, 2);
  43. float y = (float)m_vecCtrlPt[0].y * pow(1 - t, 2)   +
  44. (float)m_vecCtrlPt[1].y * t * (1 - t) * 2 +
  45. (float)m_vecCtrlPt[2].y * pow(t, 2);
  46. stPt.x =x;
  47. stPt.y= y;
  48. }

Bezier曲线的原理 及 二次Bezier曲线的实现的更多相关文章

  1. Bezier贝塞尔曲线的原理、二次贝塞尔曲线的实现

    Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线.曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状. 一次Bezier曲线公式: 一次Bezier曲线是由P0至P1的连续点, ...

  2. 贝塞尔曲线:原理、自定义贝塞尔曲线View、使用!!!

    一.原理 转自:http://www.2cto.com/kf/201401/275838.html Android动画学习Demo(3) 沿着贝塞尔曲线移动的Property Animation Pr ...

  3. Android 利用二次贝塞尔曲线模仿购物车加入物品抛物线动画

    Android 利用二次贝塞尔曲线模仿购物车加入物品抛物线动画 0.首先.先给出一张效果gif图. 1.贝塞尔曲线原理及相关公式參考:http://www.jianshu.com/p/c0d7ad79 ...

  4. Oracle 集群】ORACLE DATABASE 11G RAC 知识图文详细教程之ORACLE集群概念和原理(二)

    ORACLE集群概念和原理(二) 概述:写下本文档的初衷和动力,来源于上篇的<oracle基本操作手册>.oracle基本操作手册是作者研一假期对oracle基础知识学习的汇总.然后形成体 ...

  5. canvas绘制二次贝塞尔曲线----演示二次贝塞尔四个参数的作用

    canvas中绘制二次贝塞尔曲线的方法为ctx.quadraticCurveTo(x1,y1,x2,y2); 四个参数分别为两个控制点的坐标.开始点即当前canvas中目前的点,如果想从指定的点开始, ...

  6. 深入源码分析SpringMVC底层原理(二)

    原文链接:深入源码分析SpringMVC底层原理(二) 文章目录 深入分析SpringMVC请求处理过程 1. DispatcherServlet处理请求 1.1 寻找Handler 1.2 没有找到 ...

  7. JVM 内部原理(二)— 基本概念之字节码

    JVM 内部原理(二)- 基本概念之字节码 介绍 版本:Java SE 7 每位使用 Java 的程序员都知道 Java 字节码在 Java 运行时(JRE - Java Runtime Enviro ...

  8. 【转】Oracle 集群】ORACLE DATABASE 11G RAC 知识图文详细教程之ORACLE集群概念和原理(二)

      阅读目录 目录 Oracle集群概念和原理 RAC概述 RAC 集成集群件管理 RAC 的体系结构 RAC 的结构组成和机制 RAC 后台进程 RAC 共享存储 RAC 数据库和单实例数据库的区别 ...

  9. 基于canvas二次贝塞尔曲线绘制鲜花

    canvas中二次贝塞尔曲线参数说明: cp1x:控制点1横坐标 cp1y:控制点1纵坐标 x: 结束点1横坐标 y:结束点1纵坐标 cp2x:控制点2横坐标 cp2y:控制点2纵坐标 z:结束点2横 ...

随机推荐

  1. POJ3415 Common Substrings

    后缀数组 求长度不小于k的公共子串的个数 代码: #include <stdio.h> #include <string.h> ; int len, len1; int wa[ ...

  2. JSON 之 SuperObject(10): Merge、Clone、ForcePath

    unit Unit1; interface uses   Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, For ...

  3. Home Server

    今天分享一个作品--HomeServer,一个基于云存储理念的集家庭数据存储.共享.管理及远程访问为一体的家用存储设备.通俗的讲,就是一个家庭数据银行,为家庭的数据提供专业.安全.便捷.持久.全天候的 ...

  4. spring mvc出现 Failed to convert property value of type 'java.lang.String' to required type 'java.util.Date' for property 'endtime'

    在使用spring mvc中,绑定页面传递时间字符串数据给Date类型是出错: Failed to convert property value of type [java.lang.String] ...

  5. Hadoop2配置详解

    配置文件 hadoop的配置是由两种重要类型的配置文件进行驱动的: 默认是只读的配置: core-default.xml, hdfs-default.xml, yarn-default.xml and ...

  6. 进程描述符task_struct

    1.进程状态 volatile long state; int exit_state; state成员的可能取值如下: #define TASK_RUNNING        0 #define TA ...

  7. 【转】很有用但鲜有人知的 Linux 命令

    Linux命令行吸引了大多数Linux爱好者.一个正常的Linux用户一般掌握大约50-60个命令来处理每日的任务.Linux命令和它们的转换对于Linux用户.Shell脚本程序员和管理员来说是最有 ...

  8. iPad中控制器view的width和height

    一.iPad中控制器view的width和height 1> 规律 * width 是宽高中最小的那个值 * height 是宽高中最大的那个值 2> 举例(比如窗口根控制器的view,有 ...

  9. HDU 5003 Osu!

    解题思路:水题,不多说. #include<cstdio> #include<cstring> #include<algorithm> #include<cm ...

  10. Spring 事务配置5种方式

    Spring配置文件中关于事务配置总是由三个组成部分,分别是DataSource.TransactionManager和代理机制这三部分,无论哪种配置方式,一般变化的只是代理机制这部分. DataSo ...