题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=15

题意:给定一个图。判断是不是弦图?

思路:(1)神马是弦图?对于一个无向图,若该图的任意一个长度大于3的环中存在一条边连接这个环上不相邻的两点,则此图称作弦图。

(2)什么是团?团是原图的一个子图,子图就是包含了原图的某些点,那么就要包含这些点之间的边。并且团不是一般的子图而是一个完全子图,就是这个子图的任意两个顶点之间都有边。下面的ABCD就是原图的一个团。

(3)完美消除序列:原图的一个点的序列(每个点出现且恰好出现一次)v1, v2,……, vn满足{vi, vi+1,…,vn}的组成的子图为团。

(4)一个无向图是弦图当且仅当它有一个完美消除序列。

(5)如何计算完美消除序列?最大势算法:
从n到1的顺序依次给点标号(标号为i的点出现在完美消除序列的第i个)。 设label[i]表示第i个点与多少个已标号的点相
邻,每次选择label[i]最大的未标号的点进行标号。注意这里只是计算出了完美消除序列,但是在求出这个之后还没有判定是不是弦图。

(6)如何从完美消除序列判断原图是不是弦
图?最朴素的办法是依次判断
{vi+1,…,vn}中所有与vi相邻的点是否构成了一个团。可以这样优化:设{vi+1,…,vn}中所有与vi相邻的点依次为
vj1,……,vjk。只需判断vj1是否与vj2,……,vjk相邻即可。

int n,m,g[N][N];
int d[N],a[N],h[N],p[N]; int OK()
{
int i,j,u;
vector<int> V;
FORL1(i,n)
{
V.clear();
FOR1(j,n) if(g[a[i]][j]) if(p[j]>i) V.pb(j);
for(j=1;j<SZ(V);j++) if(p[V[0]]>p[V[j]])
{
swap(V[0],V[j]);
}
for(j=1;j<SZ(V);j++)
{
if(!g[V[0]][V[j]]) return 0;
}
}
return 1;
} int main()
{
Rush(n)
{
RD(m);
if(!n&&!m) break;
int i,j,k,u,v;
clr(g,0);
FOR1(i,m)
{
RD(u,v);
g[u][v]=g[v][u]=1;
}
clr(d,0); clr(h,0);
FORL1(i,n)
{
u=-1;
FOR1(j,n) if(!h[j]&&d[j]>u) u=d[j],k=j;
a[i]=k; h[k]=1; p[k]=i;
FOR1(j,n) if(g[k][j]) d[j]++;
} if(OK()) puts("Perfect");
else puts("Imperfect");
puts("");
}
return 0;
}

ZOJ 1015 Fishing Net(判断弦图)的更多相关文章

  1. ZOJ 1015 Fishing Net(弦图判定)

    In a highly modernized fishing village, inhabitants there make a living on fishery. Their major tool ...

  2. ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net

    ●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...

  3. 无向图的完美消除序列 判断弦图 ZOJ 1015 Fish net

       ZOJ1015 题意简述:给定一个无向图,判断是否存在一个长度大于3的环路,且其上没有弦(连接环上不同两点的边且不在环上). 命题等价于该图是否存在完美消除序列. 所谓完美消除序列:在 vi,v ...

  4. ZOJ 1015 弦图判定

    一些定义: 弦图是一种特殊图:它的所有极小环都只有3个顶点. 单纯点:该顶点与其邻接点在原图中的导出子图是一个完全图. 图G的完美消去序列:一个顶点序列a1a2a3...an,使得对于每个元素ai,a ...

  5. 【ZOJ】1015 Fishing Net

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1015 题意:给出一个n个点的无向图,询问是否为弦图,弦图定义为对于图中任意 ...

  6. bzoj 1242: Zju1015 Fishing Net 弦图判定

    1242: Zju1015 Fishing Net弦图判定 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 214  Solved: 81[Submit ...

  7. [bzoj1242] Zju1015 Fishing Net弦图判定

    弦图判定..MCS算法. 先选一个点,然后每次拿 相邻已选点最多 的未选点. 选完之后判断一下是否是完美消除序列. #include<cstdio> #include<iostrea ...

  8. bzoj 1242 弦图判定 MCS

    题目大意: 给定一张无向图,判断是不是弦图. 题解: 今天刚学了<弦图与区间图> 本来写了一个60行+的学习笔记 结果因为忘了保存重启电脑后被还原了... 那就算了吧. MCS最大势算法, ...

  9. 深入解析d3弦图

    记得上次看d3应该是1年前的事情了,当时还一边看一边写了d3(v5.7)的一个学习笔记:https://www.cnblogs.com/eco-just/tag/d3/ 后来转战three.js就没继 ...

随机推荐

  1. 13.熟悉JDK的配置,环境变量

    已经做烂的东西,公司的新人环境配置手册文档Java方面的就是我写的,有意的留邮箱,很详细

  2. 狗屁不通的“视频专辑:零基础学习C语言(小甲鱼版)”(2)

    前文链接:狗屁不通的“视频专辑:零基础学习C语言(小甲鱼版)”(1) 小甲鱼在很多情况下是跟着谭浩强鹦鹉学舌,所以谭浩强书中的很多错误他又重复了一次.这样,加上他自己的错误,错谬之处难以胜数. 由于拙 ...

  3. 【海岛帝国系列赛】No.7 海岛帝国:神圣之日

    50237242海岛帝国:神圣之日 [试题描述] 战争持续九个月了.“购物券”WHT的军队还在跟恐怖分子僵持着.WHT和LJX已经向“公务员”告急,情况不宜乐观.YSF为守护帝国决定打开“够累 的”星 ...

  4. SQL server 创建 修改表格 及表格基本增删改查 及 高级查询 及 (数学、字符串、日期时间)函数[转]

    SQL server 创建 修改表格 及表格基本增删改查 及 高级查询 及 (数学.字符串.日期时间)函数   --创建表格 create table aa ( UserName varchar(50 ...

  5. UIViewController卸载过程(ios6.0之前)

    1.当应用程序收到内存不足的警告之后,程序中所有存在的UIViewController都会收到didReceiveMemoryWarning调用消息,目的是将当前不显示的View释放掉,缓解内存压力. ...

  6. HTML data属性简介以及低版本浏览器兼容算法

    实例 使用 data-* 属性来嵌入自定义数据: <ul> <li data-animal-type="bird">Owl</li> <l ...

  7. Tomcat端口被占用快速解决方案

    在dos下,输入  netstat   -ano|findstr  8080 //说明:查看占用8080端口的进程 显示占用端口的进程 taskkill  /pid  6856  /f //说明,运行 ...

  8. linux下xargs命令用法详解 【转】

    转自:http://blog.chinaunix.net/uid-128922-id-289992.html xargs在linux中是个很有用的命令,它经常和其他命令组合起来使用,非常的灵活. xa ...

  9. 关于JDK,tomcat,MyEclipse的配置

    1.下载安装JDK 在自定义安装路径时,jdk和之后的jre文件夹是属于平行结构,我的安装路径为:D:\jdk\jdk1.6.0_43和D:\jdk\jre6 然后是对环境变量的配置, 计算机→属性→ ...

  10. C#:将子Form加入父Form中

    实现的功能:已建立了多个子Form界面,在父Form界面左面,点击不同标题的链接文本,父Form界面右面显示不同的子界面内容. 具体如下: 1.加入split拆分器控件 2.在splitControl ...