time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

The cinema theater hall in Sereja's city is n seats lined up in front of one large screen. There are slots for personal possessions to the left and to the right of each seat. Any two adjacent seats have exactly one shared slot. The figure below shows the arrangement of seats and slots for n = 4.

Today it's the premiere of a movie called "Dry Hard". The tickets for all the seats have been sold. There is a very strict controller at the entrance to the theater, so all n people will come into the hall one by one. As soon as a person enters a cinema hall, he immediately (momentarily) takes his seat and occupies all empty slots to the left and to the right from him. If there are no empty slots, the man gets really upset and leaves.

People are not very constant, so it's hard to predict the order in which the viewers will enter the hall. For some seats, Sereja knows the number of the viewer (his number in the entering queue of the viewers) that will come and take this seat. For others, it can be any order.

Being a programmer and a mathematician, Sereja wonders: how many ways are there for the people to enter the hall, such that nobody gets upset? As the number can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains integer n (1 ≤ n ≤ 105). The second line contains n integers, the i-th integer shows either the index of the person (index in the entering queue) with the ticket for the i-th seat or a 0, if his index is not known. It is guaranteed that all positive numbers in the second line are distinct.

You can assume that the index of the person who enters the cinema hall is a unique integer from 1 to n. The person who has index 1 comes first to the hall, the person who has index 2 comes second and so on.

Output

In a single line print the remainder after dividing the answer by number 1000000007 (109 + 7).

Examples
Input
11
0 0 0 0 0 0 0 0 0 0 0
Output
1024
Input
6
0 3 1 0 0 0
Output
3

给出一个数n还有n个数ci
如果ci>0,表示排列上的第ci个位置上的数为i
如果ci=0,表示排列上的第ci个位置上的数不确定 即是说,有一个n的排列,其中部分position上的数固定,求有多少种排列满足:
对于排列上的任意一个数x,在x之前不同时存在x+1和x-1这2个数的方案数 solution:
这道题主要在于分情况讨论,得到答案
只要发现一个性质,就可以解决问题了
要保证对于任意一个数x,x+1和x-1不同时存在,则x之前的数放在一起刚好是一个[1,n]的子
区间[L,R],这个自区间的长度为x-1,且有is[x] = L - 1 || is[x] = R + 1
这样我们只需要分情况讨论,
部分情况直接推出公式得到答案
部分情况需要用到递推,同时维护当前的L,R
具体看代码 is[i]表示排列的第i个数固定为is[i]
pre[i]表示第i个数前一个被固定的数,没有则为-1
next[i]表示第i个数后一个被固定的数,没有则为-1
f[i]表示当前考虑到排列的第i个数,当前可行的方案数 ps:
这道题初始化f的时候要注意细节,分情况初始化
  //File Name: cf380D.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年05月20日 星期五 00时32分29秒 #include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <map> #define LL long long
#define next NEXT using namespace std; const int MAXN = + ;
const int MOD = (int)1e9 + ; int is[MAXN], pre[MAXN], next[MAXN];
LL f[MAXN],jie[MAXN]; void init(int n){
jie[] = ;
for(int i=;i<=n;i++)
jie[i] = jie[i-] * i % MOD;
int now = -;
for(int i=;i<=n;i++){
pre[i] = now;
if(is[i]) now = i;
}
now = -;
for(int i=n;i>;i--){
next[i] = now;
if(is[i]) now = i;
}
} LL qp(LL x,LL y){
LL res = ;
while(y){
if(y & ) res = res * x % MOD;
x = x * x % MOD;
y >>= ;
}
return res;
} LL get_c(LL x,LL y){
if(y < || x < y) return ;
if(y == || y == x) return ;
return jie[x] * qp(jie[y] * jie[x - y] % MOD,MOD - ) % MOD;
} LL solve(int n,bool flag){
if(!flag) return qp(,n - );
init(n);
//for(int i=1;i<=n;i++){
// printf("i = %d is = %d\n",i,is[i]);
//}
int L = n + , R = ;
for(int i=;i<=n;i++){
if(!is[i]) continue;
if(L <= is[i] && R >= is[i])
return ;
if(pre[i] == - && next[i] == -){
LL ans = ,now;
for(int x=;x < is[i];x++){
now = get_c(i-,x) * get_c(n-i,is[i]-x-) % MOD;
if(x > ) ans = (ans + now * % MOD) % MOD;
else ans = (ans + now) % MOD;
}
return ans;
}
else if(pre[i] > ){
f[i] = f[pre[i]];
//printf("i = %d pre = %d next = %d f = %d\n",i,pre[i],next[i],f[i]);
if(is[i] > is[pre[i]]) R++;
else L--;
//printf("L = %d R = %d\n",L,R);
if(next[i] == -){
return f[i] * get_c(n-i,L-) % MOD;
}
else{
if(is[next[i]] > R){
//printf("i = %d f = %d\n",i,f[i]);
f[i] = f[i] * get_c(next[i]-i-,is[next[i]]-R-) % MOD;
R = is[next[i]] - ;
L = R + - next[i];
//printf("i = %d f = %d\n",i,f[i]);
}
else{
//printf("i = %d f = %d\n",i,f[i]);
f[i] = f[i] * get_c(next[i]-i-,L-is[next[i]]-) % MOD;
L = is[next[i]] + ;
R = L + next[i] - ;
//printf("i = %d f = %d\n",i,f[i]);
}
}
//printf("L = %d R = %d\n",L,R);
}
else{
if(is[i] < is[next[i]]){
R = is[next[i]] - ;
L = R + - next[i];
}
else{
L = is[next[i]] + ;
R = L + next[i] - ;
}
int cnt = abs(is[next[i]] - is[i]);
f[i] = ;
if(i == ){
f[i] = get_c(next[i]-,R-is[i]);
}
else{
//printf("is = %d L = %d R = %d\n",is[i],L,R);
if(i- <= is[i]-L)
f[i] = qp(,i-) * get_c(next[i]-i-,is[i]-L-i+) % MOD;
//printf("f = %d\n",f[i]);
if(i- <= R-is[i])
(f[i] += qp(,i-) * get_c(next[i]-i-,R-is[i]-i+)% MOD) %= MOD;
//printf("f = %d\n",f[i]);
}
//printf("i = %d pre = %d next = %d f = %d\n",i,pre[i],next[i],f[i]);
//printf("L = %d R = %d\n",L,R);
}
}
return -;
} int main(){
int n,u;
bool flag = false;
scanf("%d",&n);
memset(is,,sizeof is);
for(int i=;i<=n;i++){
scanf("%d",&u);
if(u){
is[u] = i;
flag = true;
}
}
printf("%d\n",(int)solve(n,flag));
return ;
}
												

cf380D Sereja and Cinema 组合数学的更多相关文章

  1. Codeforces 380D Sereja and Cinema (看题解)

    Sereja and Cinema 首先我们可以发现除了第一个人, 其他人都会坐在已入坐人的旁边. 难点在于计算方案数.. 我们可以从外往里把确定的人用组合数算上去,然后缩小范围. #include& ...

  2. Codeforces 380 简要题解

    ABC见上一篇. 感觉这场比赛很有数学气息. D: 显然必须要贴着之前的人坐下. 首先考虑没有限制的方案数.就是2n - 1(我们把1固定,其他的都只有两种方案,放完后长度为n) 我们发现对于一个限制 ...

  3. CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)

    Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema. Howev ...

  4. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  5. CF380C. Sereja and Brackets[线段树 区间合并]

    C. Sereja and Brackets time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. Codeforces #380 div2 C(729C) Road to Cinema

    C. Road to Cinema time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  7. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  8. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  9. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

随机推荐

  1. Codeforces Round #117 (Div. 2)

    Codeforces Round #117 (Div. 2) 代码 Codeforces Round #117 (Div. 2) A. Battlefield any trench in meters ...

  2. 关于for,while与do while

    Q:输入一个整数i,输出i+(i+1)+...+19+20的结果 S:法1:for #include<stdio.h> #include<math.h> #include< ...

  3. java编程之:按位与运算,等运算规则

    按位与运算符(&) 参加运算的两个数据,按二进制位进行“与”运算. 运算规则:0&0=0;   0&1=0;    1&0=0;     1&1=1; 即:两位 ...

  4. Hightchart.js 的使用

    中文网址介绍 http://www.hcharts.cn/docs/basic-zoom http://v1.hcharts.cn/demo/index.php?p=46

  5. paas-openshift

    https://www.openshift.com/pricing/index.htmlOpenShift是红帽的云开发平台即服务(PaaS).自由和开放源码的云计算平台使开发人员能够创建.测试和运行 ...

  6. shell脚本实例-命令记录

    http://bbs.51cto.com/thread-594667-1.html script使用注意事项输入1: [root@-shiyan rec]# cat record1 #!/bin/ba ...

  7. C语言计算开方

    C语言里面有sqrt可以计算开平方根,但似乎想要计算开任意次方根的话却没有一个固定的函数,自己写算法也蛮啰嗦的…… 其实啊,巧妙使用pow函数就可以实现需求. C语言库函数pow的原型声明如下: #i ...

  8. Linux 下 apache 日志分析与状态查看[转]

    假设apache日志格式为: 118.78.199.98 – - [09/Jan/2010:00:59:59 +0800] “GET /Public/Css/index.css HTTP/1.1″ 3 ...

  9. Zookeeper 源码分析-启动

    Zookeeper 源码分析-启动 博客分类: Zookeeper   本文主要介绍了zookeeper启动的过程 运行zkServer.sh start命令可以启动zookeeper.入口的main ...

  10. Jfinal中log4j的配置

    基本不用配置: 1.web.xml不用配置: 2.添加文件log4j.properties到src下面: 3.lib中复制log4j的jar包进去: 4.可以使用了; package demo; im ...