cf380D Sereja and Cinema 组合数学
1 second
256 megabytes
standard input
standard output
The cinema theater hall in Sereja's city is n seats lined up in front of one large screen. There are slots for personal possessions to the left and to the right of each seat. Any two adjacent seats have exactly one shared slot. The figure below shows the arrangement of seats and slots for n = 4.

Today it's the premiere of a movie called "Dry Hard". The tickets for all the seats have been sold. There is a very strict controller at the entrance to the theater, so all n people will come into the hall one by one. As soon as a person enters a cinema hall, he immediately (momentarily) takes his seat and occupies all empty slots to the left and to the right from him. If there are no empty slots, the man gets really upset and leaves.
People are not very constant, so it's hard to predict the order in which the viewers will enter the hall. For some seats, Sereja knows the number of the viewer (his number in the entering queue of the viewers) that will come and take this seat. For others, it can be any order.
Being a programmer and a mathematician, Sereja wonders: how many ways are there for the people to enter the hall, such that nobody gets upset? As the number can be quite large, print it modulo 1000000007 (109 + 7).
The first line contains integer n (1 ≤ n ≤ 105). The second line contains n integers, the i-th integer shows either the index of the person (index in the entering queue) with the ticket for the i-th seat or a 0, if his index is not known. It is guaranteed that all positive numbers in the second line are distinct.
You can assume that the index of the person who enters the cinema hall is a unique integer from 1 to n. The person who has index 1 comes first to the hall, the person who has index 2 comes second and so on.
In a single line print the remainder after dividing the answer by number 1000000007 (109 + 7).
11
0 0 0 0 0 0 0 0 0 0 0
1024
6
0 3 1 0 0 0
3 给出一个数n还有n个数ci
如果ci>0,表示排列上的第ci个位置上的数为i
如果ci=0,表示排列上的第ci个位置上的数不确定 即是说,有一个n的排列,其中部分position上的数固定,求有多少种排列满足:
对于排列上的任意一个数x,在x之前不同时存在x+1和x-1这2个数的方案数 solution:
这道题主要在于分情况讨论,得到答案
只要发现一个性质,就可以解决问题了
要保证对于任意一个数x,x+1和x-1不同时存在,则x之前的数放在一起刚好是一个[1,n]的子
区间[L,R],这个自区间的长度为x-1,且有is[x] = L - 1 || is[x] = R + 1
这样我们只需要分情况讨论,
部分情况直接推出公式得到答案
部分情况需要用到递推,同时维护当前的L,R
具体看代码 is[i]表示排列的第i个数固定为is[i]
pre[i]表示第i个数前一个被固定的数,没有则为-1
next[i]表示第i个数后一个被固定的数,没有则为-1
f[i]表示当前考虑到排列的第i个数,当前可行的方案数 ps:
这道题初始化f的时候要注意细节,分情况初始化
//File Name: cf380D.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年05月20日 星期五 00时32分29秒 #include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <map> #define LL long long
#define next NEXT using namespace std; const int MAXN = + ;
const int MOD = (int)1e9 + ; int is[MAXN], pre[MAXN], next[MAXN];
LL f[MAXN],jie[MAXN]; void init(int n){
jie[] = ;
for(int i=;i<=n;i++)
jie[i] = jie[i-] * i % MOD;
int now = -;
for(int i=;i<=n;i++){
pre[i] = now;
if(is[i]) now = i;
}
now = -;
for(int i=n;i>;i--){
next[i] = now;
if(is[i]) now = i;
}
} LL qp(LL x,LL y){
LL res = ;
while(y){
if(y & ) res = res * x % MOD;
x = x * x % MOD;
y >>= ;
}
return res;
} LL get_c(LL x,LL y){
if(y < || x < y) return ;
if(y == || y == x) return ;
return jie[x] * qp(jie[y] * jie[x - y] % MOD,MOD - ) % MOD;
} LL solve(int n,bool flag){
if(!flag) return qp(,n - );
init(n);
//for(int i=1;i<=n;i++){
// printf("i = %d is = %d\n",i,is[i]);
//}
int L = n + , R = ;
for(int i=;i<=n;i++){
if(!is[i]) continue;
if(L <= is[i] && R >= is[i])
return ;
if(pre[i] == - && next[i] == -){
LL ans = ,now;
for(int x=;x < is[i];x++){
now = get_c(i-,x) * get_c(n-i,is[i]-x-) % MOD;
if(x > ) ans = (ans + now * % MOD) % MOD;
else ans = (ans + now) % MOD;
}
return ans;
}
else if(pre[i] > ){
f[i] = f[pre[i]];
//printf("i = %d pre = %d next = %d f = %d\n",i,pre[i],next[i],f[i]);
if(is[i] > is[pre[i]]) R++;
else L--;
//printf("L = %d R = %d\n",L,R);
if(next[i] == -){
return f[i] * get_c(n-i,L-) % MOD;
}
else{
if(is[next[i]] > R){
//printf("i = %d f = %d\n",i,f[i]);
f[i] = f[i] * get_c(next[i]-i-,is[next[i]]-R-) % MOD;
R = is[next[i]] - ;
L = R + - next[i];
//printf("i = %d f = %d\n",i,f[i]);
}
else{
//printf("i = %d f = %d\n",i,f[i]);
f[i] = f[i] * get_c(next[i]-i-,L-is[next[i]]-) % MOD;
L = is[next[i]] + ;
R = L + next[i] - ;
//printf("i = %d f = %d\n",i,f[i]);
}
}
//printf("L = %d R = %d\n",L,R);
}
else{
if(is[i] < is[next[i]]){
R = is[next[i]] - ;
L = R + - next[i];
}
else{
L = is[next[i]] + ;
R = L + next[i] - ;
}
int cnt = abs(is[next[i]] - is[i]);
f[i] = ;
if(i == ){
f[i] = get_c(next[i]-,R-is[i]);
}
else{
//printf("is = %d L = %d R = %d\n",is[i],L,R);
if(i- <= is[i]-L)
f[i] = qp(,i-) * get_c(next[i]-i-,is[i]-L-i+) % MOD;
//printf("f = %d\n",f[i]);
if(i- <= R-is[i])
(f[i] += qp(,i-) * get_c(next[i]-i-,R-is[i]-i+)% MOD) %= MOD;
//printf("f = %d\n",f[i]);
}
//printf("i = %d pre = %d next = %d f = %d\n",i,pre[i],next[i],f[i]);
//printf("L = %d R = %d\n",L,R);
}
}
return -;
} int main(){
int n,u;
bool flag = false;
scanf("%d",&n);
memset(is,,sizeof is);
for(int i=;i<=n;i++){
scanf("%d",&u);
if(u){
is[u] = i;
flag = true;
}
}
printf("%d\n",(int)solve(n,flag));
return ;
}
cf380D Sereja and Cinema 组合数学的更多相关文章
- Codeforces 380D Sereja and Cinema (看题解)
Sereja and Cinema 首先我们可以发现除了第一个人, 其他人都会坐在已入坐人的旁边. 难点在于计算方案数.. 我们可以从外往里把确定的人用组合数算上去,然后缩小范围. #include& ...
- Codeforces 380 简要题解
ABC见上一篇. 感觉这场比赛很有数学气息. D: 显然必须要贴着之前的人坐下. 首先考虑没有限制的方案数.就是2n - 1(我们把1固定,其他的都只有两种方案,放完后长度为n) 我们发现对于一个限制 ...
- CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)
Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema. Howev ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- CF380C. Sereja and Brackets[线段树 区间合并]
C. Sereja and Brackets time limit per test 1 second memory limit per test 256 megabytes input standa ...
- Codeforces #380 div2 C(729C) Road to Cinema
C. Road to Cinema time limit per test 1 second memory limit per test 256 megabytes input standard in ...
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- 组合数学or not ---- n选k有重
模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...
- 组合数学(全排列)+DFS CSU 1563 Lexicography
题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...
随机推荐
- 二叉树遍历 空间复杂度为O(1)
http://blog.csdn.net/mxw976235955/article/details/39829973 http://www.tuicool.com/articles/zA7NJbj / ...
- mac下使用Solarized配色方案
Solarized配色方案不用多介绍了.具体点击这里:http://ethanschoonover.com/solarized 我们首先搞定macvim 你需要下载solarized.vim配色文件, ...
- 三星Mega 6.3(i9200)删除kingroot
关于kingroot实际效果怎么样,是不是流氓软件,我不做评论. 手机型号,三星galaxy mega 6.3(i9200)水货,更详细的机型不知道怎么看. 刷了官方的rom以后,下载了kingroo ...
- linux账户管理[转自vbird]
useraddpasswdchageusermoduserdelfingerchfnchshidgroupaddgroupmodgroupdelgpasswd useradd 完全参考默认值创建一个用 ...
- EXT2 文件系统
转自:http://www.cnblogs.com/ggjucheng/archive/2012/08/22/2651641.html#ext2_filesystem 认识ext文件系统 硬盘组成与分 ...
- 图中最短路径算法(Dijkstra算法)(转)
1.Dijkstra 1) 适用条件&范围: a) 单源最短路径(从源点s到其它所有顶点v); b) 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E ...
- PHP strrpos strpos strstr strrchr 区别
1. strstr string strstr ( string $haystack , mixed $needle [, bool $before_needle = false ] ) $needl ...
- 二十四种设计模式:装饰模式(Decorator Pattern)
装饰模式(Decorator Pattern) 介绍动态地给一个对象添加一些额外的职责.就扩展功能而言,它比生成子类方式更为灵活.示例有一个Message实体类,某个对象对它的操作有Insert()和 ...
- python_day7【模块configparser、XML、requests、shutil、系统命令-面向对象】之篇
python内置模块补充 一.configparser configparser:用户处理特定格式的文件,其本质是利用open打开文件 # 节点 [section1] #键值对k1 = v1 k2:v ...
- Collection+JSON 文档
Collection+JSON 文档 对于这个设计,我们不再以可能的状态和转移为起点,相反,我们将从一个集合状态响应中可能元素的顶层布局开始.从这一点入手,其他细节可以随着设计向超媒体类型最底层属性的 ...