We have a sequence of N positive integers: a[0] through a[N-1]. You do not know these integers. All you know is the number of trailing zeros in their binary representations. You are given a vector <int> d with N elements. For each i, d[i] is the number of trailing zeros in the binary representation of a[i].

For example, suppose that a[0]=40. In binary, 40 is 101000 which ends in three zeros. Therefore, d[0] will be 3.

You like geometric sequences. (See the Notes section for a definition of a geometric sequence.) You would like to count all non-empty contiguous subsequences of the sequence a[0], a[1], ..., a[N-1] that can be geometric sequences (given the information you have in d).

More precisely: For each pair (i,j) such that 0 <= i <= j <= N-1, we ask the following question: "Given the values d[i] through d[j], is it possible that the values a[i] through a[j] form a geometric sequence?"

For example, suppose that d = {0,1,2,3,2}. For i=0 and j=3 the answer is positive: it is possible that the values a[0] through a[3] are {1,2,4,8} which is a geometric sequence. For i=1 and j=4 the answer is negative: there is no geometric sequence with these numbers of trailing zeros in binary.

Compute and return the number of contiguous subsequences of a[0], a[1], ..., a[N-1] that can be geometric sequences.

Definition

    
Class: PotentialGeometricSequence
Method: numberOfSubsequences
Parameters: vector <int>
Returns: int
Method signature: int numberOfSubsequences(vector <int> d)
(be sure your method is public)

Limits

    
Time limit (s): 2.000
Memory limit (MB): 256

Notes

- A geometric sequence is any sequence g[0], g[1], ..., g[k-1] such that there is a real number q (the quotient) with the property that for each valid i, g[i+1] = g[i]*q. For example, {1,2,4,8} is a geometric sequence with q=2, {7,7,7} is a geometric sequence with q=1, and {18,6,2} is a geometric sequence with q=1/3.

Constraints

- N will be between 1 and 50, inclusive.
- d will contain exactly N elements.
- Each element of d will be between 0 and 100, inclusive.

d是二进制下这个数的末尾的0的个数,求其子序列里能够构成的等比序列的个数。

分析:求其等差子序列的个数

这应该算是一个看数字的规律题吧,我找的也挺慢的,不过想想二进制下每一位代表的数字 比较 一下规格,应该不难猜出来这个 等比 和 等差的规律

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
#define LL __int64
const double eps = 1e-;
const int maxn = +;
using namespace std; class PotentialGeometricSequence
{
public:
int numberOfSubsequences(vector <int> d)
{
int n = d.size();
int i, j, ret = n+n-, f, x, k, y;
for(i = ; i < n; i++)
{
for(j = ; j < n; j++)
{
if(j+i < n)
{
f = ;
x = d[j+]-d[j];
for(k = j+; k <= j+i; k++)
{
y = d[k]-d[k-];
if(y!=x)
f = ;
}
if(f == )
ret ++;
}
}
}
return ret;
}
};

tc srm 632 500 (规律)的更多相关文章

  1. TC srm 673 300 div1

    TC srm.673 300 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 Description 给你n(n<=50)匹马和n个人,一匹马和一个人能 ...

  2. tc srm 636 div2 500

    100的数据直接暴力就行,想多了... ac的代码: #include <iostream> #include <cstdio> #include <cstring> ...

  3. TC SRM 597 DEV2

    第一次玩TC的SRM,只完成了一题,有点失落,不过还是要把每个问题都研究清楚才是我的本性,呵呵 第一题思路: 任意一个数,不断除掉2以后的剩下的数若相同则YES否则NO 第二题: 最开始判断字母个数是 ...

  4. TC SRM 593 DIV1 250

    我只能说的亏没做,要不就挂0了.. 本来想四色定理,肯定4就可以的...然后准备爆,发现3的时候不好爆,又想了老一会,嗯,数据范围不小,应该不是暴力,直接找规律,貌似最大就是3,有一个3连块,输出3, ...

  5. TC SRM 584 DIV 2

    第一次在DIV2 AK了. 250水题. 500,FLoyd搞出所有边的最短路,然后找最短路,中最长的,如果有不连通的边返回-1 1000,组合DP,各种慌乱,在最后1分钟时,交上了,感觉很棒,最后还 ...

  6. TC SRM 664 div2 B BearPlaysDiv2 bfs

    BearPlaysDiv2 Problem Statement    Limak is a little bear who loves to play. Today he is playing by ...

  7. TC SRM 663 div2 B AABB 逆推

    AABB Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 TC Description One day, Jamie noticed that many En ...

  8. TC SRM 663 div2 A ChessFloor 暴力

    ChessFloor Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 TC Description Samantha is renovating a squa ...

  9. TC SRM 665 DIV2 A LuckyXor 暴力

    LuckyXorTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 TC Description A lucky number is a positive int ...

随机推荐

  1. windows 7 下快速搭建php环境 windows7+IIS7+php

    1.       安装IIS v7.0 控制面板-程序和功能-打开或关闭Windows 功能 测试是否成功安装IIS v7.0,在浏览器输入:http://localhost/ 或者http://12 ...

  2. 企业级账号更新app

    企业级账号 版本更新总结       参考:http://jingyan.baidu.com/article/a3aad71aa5fbfbb1fb0096b1.html 1.打包ipa,plist工具 ...

  3. 表单很多数据项录入的时候,提交controller发生异常,数据回显。

    1.添加的情况(Model传递Form Data) request.getSession().setAttribute("car", car); //抛出异常的时候,数据回显. 2 ...

  4. 函数式 CSS (FCSS)

    在Wealthfront我们是一个函数式编程的超级粉丝.强调不变性和函数式风格意味着更少的“意外”(surprises),因为副作用是有限的或不存在的.我们能将独立的组件迅速构建出大型系统,通过组合的 ...

  5. 修改MySQL数据库的密码

    通过MySQL命令行,可以修改MySQL数据库的密码,下面就为您详细介绍该MySQL命令行,如果您感兴趣的话,不妨一看. 格式:mysql -u用户名 -p旧密码 password 新密码 1.给ro ...

  6. jquery ajax post 传递数组 ,多checkbox 取值

    jquery ajax post 传递数组 ,多checkbox 取值 http://w8700569.iteye.com/blog/1954396 使用$.each(function(){});可以 ...

  7. iOS第三方地图-百度地图定位的封装

    // // BaiduMapTools.h // baidumapTest // // Created by apple on 15/8/26. // Copyright (c) 2015年 tqh. ...

  8. 高质量图形库:pixellib

    点这里 pixellib 是高质量 2D 图形库: 高质量抗锯齿,矢量图形绘制 多种图像格式: RGB, BGR, ARGB, ABGR, RGBA, BGRA 8 / 15 / 16 / 24 / ...

  9. Vi的使用

    Vi的使用: 范例一: 使用Vi进入一般模式: [root@dsetl lp]# vi test1.txt 范例二:按下i键进入编辑模式,开始编辑文字 -- INSERT – 范例三:按下[ESC]键 ...

  10. MySQL数据库优化总结

    对于一个以数据为中心的应用,数据库的好坏直接影响到程序的性能,因此数据库性能至关重要.一般来说,要保证数据库的效率,要做好以下四个方面的工作:数 据库设计.sql语句优化.数据库参数配置.恰当的硬件资 ...