hdu题目

poj题目

参考了 罗穗骞的论文《后缀数组——处理字符串的有力工具》

题意:求两个序列的最长公共子串

思路:后缀数组经典题目之一(模版题)

//后缀数组sa:将s的n个后缀从小到大排序后将 排序后的后缀的开头位置 顺次放入sa中,则sa[i]储存的是排第i大的后缀的开头位置。简单的记忆就是“排第几的是谁”。
//名次数组rank:rank[i]保存的是suffix(i){后缀}在所有后缀中从小到大排列的名次。则 若 sa[i]=j,则 rank[j]=i。简单的记忆就是“你排第几”。
//对于 后缀数组sa 与 名次数组rank ,有rank[ sa[i] ]=i (这是很重要的一点,通过sa与rank的关系可以求出后缀数组)
//height 数组: 定义height[i]=suffix(sa[i-1]) 和 suffix(sa[i]) 的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀。 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; #define maxn 200010
int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}//yuan lai zhi qian ba zhe li de l cuo dang cheng 1 le ...
void da(int *r,int *sa,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=;i<m;i++)ws[i]=;
for(i=;i<n;i++)ws[x[i]=r[i]]++;
for(i=;i<m;i++)ws[i]+=ws[i-];
for(i=n-;i>=;i--)sa[--ws[x[i]]]=i;
for(j=,p=;p<n;j*=,m=p)
{
for(p=,i=n-j;i<n;i++)y[p++]=i;
for(i=;i<n;i++)if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=;i<n;i++)wv[i]=x[y[i]];
for(i=;i<m;i++)ws[i]=;
for(i=;i<n;i++)ws[wv[i]]++;
for(i=;i<m;i++)ws[i]+=ws[i-];
for(i=n-;i>=;i--)sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=,x[sa[]]=,i=;i<n;i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)? (p-):p++;
}
}
int rankk[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
int i,j,k=;
for(i=;i<=n;i++)rankk[sa[i]]=i;
for(i=;i<n;height[rankk[i++]]=k)
for(k? k--:,j=sa[rankk[i]-];r[i+k]==r[j+k];k++);
}
int RMQ[maxn];
int mm[maxn];
int best[][maxn];
void initRMQ(int n)
{
int i,j,a,b;
for(mm[]=-,i=;i<=n;i++)
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
for(i=;i<=n;i++)best[][i]=i;
for(i=;i<=mm[n];i++)
for(j=;j<=n+-(<<i);j++)
{
a=best[i-][j];
b=best[i-][j+(<<(i-))];
if(RMQ[a]<RMQ[b])best[i][j]=a;
else best[i][j]=b;
}
}
int askRMQ(int a,int b)
{
int t;
t=mm[b-a+];b-=(<<t)-;
a=best[t][a];b=best[t][b];
return RMQ[a]<RMQ[b]? a:b;
}
int lcp(int a,int b)
{
int t;
a=rankk[a]; b=rankk[b];
if(a>b) {t=a;a=b;b=t;}
return (height[askRMQ(a+,b)]);
} char s[maxn];
int r[maxn],sa[maxn];
int main()
{
while(scanf("%s",s)!=EOF)
{
int len1=strlen(s);
s[len1]='';//yin wei bu ce ng chu xian ,suo yi bu yong dan xin ying xiang jie guo
scanf("%s",s+len1+);
int len2=strlen(s); for(int i=;i<len2;i++)r[i]=s[i];//r[i]biao shi pai de shi di ji
r[len2]=;//ji shu pai xu shi de xu yao ,zui hou yi ge jia she wei zui xiao da(r,sa,len2+,);
calheight(r,sa,len2);
int ans=;
//bian li height shu zu, cong di 2 ge kai shi (xia biao shi cong 1 kai shi de )
for(int i=;i<=len2;i++)
{
if(height[i]>ans)
{
if((len1<sa[i]&&len1>sa[i-])||(len1>sa[i]&&len1<sa[i-]))
ans=height[i];
}
}
printf("%d\n",ans);
}
return ;
}

HDU 1403 Longest Common Substring(后缀数组,最长公共子串)的更多相关文章

  1. hdu 1403 Longest Common Substring 后缀数组 模板题

    题目链接 题意 问两个字符串的最长公共子串. 思路 加一个特殊字符然后拼接起来,求得后缀数组与\(height\)数组.扫描一遍即得答案,注意判断起始点是否分别在两个串内. Code #include ...

  2. [SPOJ1811]Longest Common Substring 后缀自动机 最长公共子串

    题目链接:http://www.spoj.com/problems/LCS/ 题意如题目,求两个串的最大公共子串LCS. 首先对其中一个字符串A建立SAM,然后用另一个字符串B在上面跑. 用一个变量L ...

  3. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  4. HDU 1403 Longest Common Substring(后缀自动机——附讲解 or 后缀数组)

    Description Given two strings, you have to tell the length of the Longest Common Substring of them. ...

  5. HDU - 1403 - Longest Common Substring

    先上题目: Longest Common Substring Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1403 Longest Common Substring(最长公共子串)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 题意:给出两个字符串,求最长公共子串的长度. 思路: 刚开始学后缀数组,确实感觉很难,但是这东西很强大,所 ...

  7. POJ 2774 Long Long Message&&HDU 1403 Longest Common Substring&&COJ 1203

    后缀数组的买1送2题... HDU的那题数据实在是太水了,后来才发现在COJ和POJ上都是WA..原因在一点:在建立sa数组的时候里面的n应该是字符串长度+1....不懂可以去看罗大神的论文... 就 ...

  8. POJ 2217 (后缀数组+最长公共子串)

    题目链接: http://poj.org/problem?id=2217 题目大意: 求两个串的最长公共子串,注意子串是连续的,而子序列可以不连续. 解题思路: 后缀数组解法是这类问题的模板解法. 对 ...

  9. POJ-2774-Long Long Message(后缀数组-最长公共子串)

    题意: 给定两个字符串 A 和 B,求最长公共子串. 分析: 字符串的任何一个子串都是这个字符串的某个后缀的前缀. 求 A 和 B 的最长公共子串等价于求 A 的后缀和 B 的后缀的最长公共前缀的最大 ...

随机推荐

  1. [css filter]filter在界面实现滤镜效果

    最近逛当当,发现当当尾品会的首页推荐最底端的商品链接是灰色的图片,然后鼠标hover之后就会变成正常的彩色 肯定不是通过img来改变的,然后直接看了一下源码,其实是用的filter属性 _(:з」∠) ...

  2. flask程序部署在openshift上的一些注意事项

    https://www.openshift.com/blogs/how-to-install-and-configure-a-python-flask-dev-environment-deploy-t ...

  3. JavaWeb之 JSP:内置对象,EL表达式,JSP标签基础

    JSP的内置对象 什么是JSP的内置对象呢? 在JSP页面进行编程的时候,如果我们要使用一些对象,如:HttpSession,ServletConfig,ServletContext这些对象,如果每次 ...

  4. SQL语句中各种数据类型转换方法总结

    1.Access 每个函数都可以强制将一个表达式转换成某种特定数据类型. 语法 CBool(expression) CByte(expression) CCur(expression) CDate(e ...

  5. oracle expdp impdp

    一.不管导入还有导出都要先创建目录 1.创建目录 create directory my_dir as 'd:\yth';--生成目录(必须在指定位置先创建文件夹,名称最好与用户名一致) yth:是目 ...

  6. DeviceOne开发HelloWord

    http://www.cnblogs.com/wjiaonianhua/p/5278061.html http://www.jb51.net/article/75693.htm 2015 年 9 月 ...

  7. orcle 查询数据集对变量赋值函数

    create or replace function test(Name in varchar2 ) return varchar2 is V_CONTAINERDESC CHAR ); BEGIN ...

  8. ASP.NET2.0中对TextBox的Enable和ReadOnly属性的限制

    在以前的ASP.NET 1.x版本中,设置为ReadOnly的TextBox控件在客户端更改了值后,在服务器端仍然可以得到修改后的值,但在ASP.NET 2.0中,这种做法已经限制.这是为了提高应用程 ...

  9. iOS进阶学习-CoreData

    一.CoreData数据库框架的优势 1.CoreData数据持久化框架是Cocoa API的一部分,首次在iOS5版本的系统中出现,它允许按照实体-属性-值模型组织数据,并以XML.二进制文件或者S ...

  10. IOS应用程序升级

    IOS应用程序升级流程介绍:IOS手机端应用程序需要升级时,打开服务器端html文件(本文为ucab.html文件)->点击在线安装->打开plist文件(本文中为ucab.plist文件 ...