hdu题目

poj题目

参考了 罗穗骞的论文《后缀数组——处理字符串的有力工具》

题意:求两个序列的最长公共子串

思路:后缀数组经典题目之一(模版题)

//后缀数组sa:将s的n个后缀从小到大排序后将 排序后的后缀的开头位置 顺次放入sa中,则sa[i]储存的是排第i大的后缀的开头位置。简单的记忆就是“排第几的是谁”。
//名次数组rank:rank[i]保存的是suffix(i){后缀}在所有后缀中从小到大排列的名次。则 若 sa[i]=j,则 rank[j]=i。简单的记忆就是“你排第几”。
//对于 后缀数组sa 与 名次数组rank ,有rank[ sa[i] ]=i (这是很重要的一点,通过sa与rank的关系可以求出后缀数组)
//height 数组: 定义height[i]=suffix(sa[i-1]) 和 suffix(sa[i]) 的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀。 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; #define maxn 200010
int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}//yuan lai zhi qian ba zhe li de l cuo dang cheng 1 le ...
void da(int *r,int *sa,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=;i<m;i++)ws[i]=;
for(i=;i<n;i++)ws[x[i]=r[i]]++;
for(i=;i<m;i++)ws[i]+=ws[i-];
for(i=n-;i>=;i--)sa[--ws[x[i]]]=i;
for(j=,p=;p<n;j*=,m=p)
{
for(p=,i=n-j;i<n;i++)y[p++]=i;
for(i=;i<n;i++)if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=;i<n;i++)wv[i]=x[y[i]];
for(i=;i<m;i++)ws[i]=;
for(i=;i<n;i++)ws[wv[i]]++;
for(i=;i<m;i++)ws[i]+=ws[i-];
for(i=n-;i>=;i--)sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=,x[sa[]]=,i=;i<n;i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)? (p-):p++;
}
}
int rankk[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
int i,j,k=;
for(i=;i<=n;i++)rankk[sa[i]]=i;
for(i=;i<n;height[rankk[i++]]=k)
for(k? k--:,j=sa[rankk[i]-];r[i+k]==r[j+k];k++);
}
int RMQ[maxn];
int mm[maxn];
int best[][maxn];
void initRMQ(int n)
{
int i,j,a,b;
for(mm[]=-,i=;i<=n;i++)
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
for(i=;i<=n;i++)best[][i]=i;
for(i=;i<=mm[n];i++)
for(j=;j<=n+-(<<i);j++)
{
a=best[i-][j];
b=best[i-][j+(<<(i-))];
if(RMQ[a]<RMQ[b])best[i][j]=a;
else best[i][j]=b;
}
}
int askRMQ(int a,int b)
{
int t;
t=mm[b-a+];b-=(<<t)-;
a=best[t][a];b=best[t][b];
return RMQ[a]<RMQ[b]? a:b;
}
int lcp(int a,int b)
{
int t;
a=rankk[a]; b=rankk[b];
if(a>b) {t=a;a=b;b=t;}
return (height[askRMQ(a+,b)]);
} char s[maxn];
int r[maxn],sa[maxn];
int main()
{
while(scanf("%s",s)!=EOF)
{
int len1=strlen(s);
s[len1]='';//yin wei bu ce ng chu xian ,suo yi bu yong dan xin ying xiang jie guo
scanf("%s",s+len1+);
int len2=strlen(s); for(int i=;i<len2;i++)r[i]=s[i];//r[i]biao shi pai de shi di ji
r[len2]=;//ji shu pai xu shi de xu yao ,zui hou yi ge jia she wei zui xiao da(r,sa,len2+,);
calheight(r,sa,len2);
int ans=;
//bian li height shu zu, cong di 2 ge kai shi (xia biao shi cong 1 kai shi de )
for(int i=;i<=len2;i++)
{
if(height[i]>ans)
{
if((len1<sa[i]&&len1>sa[i-])||(len1>sa[i]&&len1<sa[i-]))
ans=height[i];
}
}
printf("%d\n",ans);
}
return ;
}

HDU 1403 Longest Common Substring(后缀数组,最长公共子串)的更多相关文章

  1. hdu 1403 Longest Common Substring 后缀数组 模板题

    题目链接 题意 问两个字符串的最长公共子串. 思路 加一个特殊字符然后拼接起来,求得后缀数组与\(height\)数组.扫描一遍即得答案,注意判断起始点是否分别在两个串内. Code #include ...

  2. [SPOJ1811]Longest Common Substring 后缀自动机 最长公共子串

    题目链接:http://www.spoj.com/problems/LCS/ 题意如题目,求两个串的最大公共子串LCS. 首先对其中一个字符串A建立SAM,然后用另一个字符串B在上面跑. 用一个变量L ...

  3. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  4. HDU 1403 Longest Common Substring(后缀自动机——附讲解 or 后缀数组)

    Description Given two strings, you have to tell the length of the Longest Common Substring of them. ...

  5. HDU - 1403 - Longest Common Substring

    先上题目: Longest Common Substring Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1403 Longest Common Substring(最长公共子串)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 题意:给出两个字符串,求最长公共子串的长度. 思路: 刚开始学后缀数组,确实感觉很难,但是这东西很强大,所 ...

  7. POJ 2774 Long Long Message&&HDU 1403 Longest Common Substring&&COJ 1203

    后缀数组的买1送2题... HDU的那题数据实在是太水了,后来才发现在COJ和POJ上都是WA..原因在一点:在建立sa数组的时候里面的n应该是字符串长度+1....不懂可以去看罗大神的论文... 就 ...

  8. POJ 2217 (后缀数组+最长公共子串)

    题目链接: http://poj.org/problem?id=2217 题目大意: 求两个串的最长公共子串,注意子串是连续的,而子序列可以不连续. 解题思路: 后缀数组解法是这类问题的模板解法. 对 ...

  9. POJ-2774-Long Long Message(后缀数组-最长公共子串)

    题意: 给定两个字符串 A 和 B,求最长公共子串. 分析: 字符串的任何一个子串都是这个字符串的某个后缀的前缀. 求 A 和 B 的最长公共子串等价于求 A 的后缀和 B 的后缀的最长公共前缀的最大 ...

随机推荐

  1. JavaWeb之 JSP基础

    什么是JSP JSP的全称是java server page, java服务页面.是提供java服务的页面~ 那么和Servlet有什么区别呢?JSP的页面既可以写java代码~也可以写html代码哦 ...

  2. 刀哥多线程之gcd-01-sync&async

    同步 & 异步 概念 同步 必须等待当前语句执行完毕,才会执行下一条语句 异步 不用等待当前语句执行完毕,就可以执行下一条语句 NSThread 中的 同步 & 异步 - (void) ...

  3. EMVTag系列2《磁条等效数据》

    Ø 57  磁条2等效数据 L: var. up to 19 -M(必备):此数据必须存在并提供给终端,终端在读应用数据过程中,如果没有读到必备数据,终端中止交易 按GB/T 17552,磁条2的数据 ...

  4. poj 2153 Rank List

    原题链接:http://poj.org/problem?id=2153 简单题,map,平衡树均可.. map: #include<algorithm> #include<iostr ...

  5. 配置 apt-get cloudera 离线source(Cloudera Manager的源)

    配置 apt-get cloudera 离线source(Cloudera Manager的源) 创建/etc/apt/source.list.d/cloudera-manager.list文件,并在 ...

  6. UIView Programming Guide学习笔记

    |View |Creating and Configuring View Objects |Creating and Managing a View Hierarchy |Adjusting the ...

  7. bootsrap check 获取选中

    代码如下: <label> <input type="checkbox" name="PartEdge2" value="false ...

  8. 014--VS2013 C++ c++定时动画

    资源图片 //全局变量HBITMAP girl[7];HDC mdc, hdc;int num; //--------------------------------------------InitI ...

  9. 最近对python颇有兴趣

    因为最近租的房子到期了,于是在豆瓣小组找房子,萌生利用python爬虫去抓取小组的房源信息. 最近2个小玩意准备做一下,mark 一下 1.豆瓣租房小组Python爬虫抓取 2.51job 职位抓取

  10. 1. VS2010---简介

    VS2010 使用简要介绍 ------------------------------------------------- 1. 几个基本概念---源程序.目标程序和翻译程序. 源程序 就是我们用 ...