LA 3350
The NASA Space Center, Houston, is less than 200 miles from San Antonio, Texas (the site of the ACM Finals this year). This is the place where the astronauts are trained for Mission Seven Dwarfs, the next giant leap in space exploration. The Mars Odyssey program revealed that the surface of Mars is very rich in yeyenum and bloggium. These minerals are important ingredients for certain revolutionary new medicines, but they are extremely rare on Earth. The aim of Mission Seven Dwarfs is to mine these minerals on Mars and bring them back to Earth.
The Mars Odyssey orbiter identified a rectangular area on the surface of Mars that is rich in minerals. The area is divided into cells that form a matrix of n <tex2html_verbatim_mark>rows and m <tex2html_verbatim_mark>columns, where the rows go from east to west and the columns go from north to south. The orbiter determined the amount of yeyenum and bloggium in each cell. The astronauts will build a yeyenum refinement factory west of the rectangular area and a bloggium factory to the north. Your task is to design the conveyor belt system that will allow them to mine the largest amount of minerals.
There are two types of conveyor belts: the first moves minerals from east to west, the second moves minerals from south to north. In each cell you can build either type of conveyor belt, but you cannot build both of them in the same cell. If two conveyor belts of the same type are next to each other, then they can be connected. For example, the bloggium mined at a cell can be transported to the bloggium refinement factory via a series of south-north conveyor belts.
The minerals are very unstable, thus they have to be brought to the factories on a straight path without any turns. This means that if there is a south-north conveyor belt in a cell, but the cell north of it contains an east-west conveyor belt, then any mineral transported on the south-north conveyor beltwill be lost. The minerals mined in a particular cell have to be put on a conveyor belt immediately, in the same cell (thus they cannot start the transportation in an adjacent cell). Furthermore, any bloggium transported to the yeyenum refinement factory will be lost, and vice versa.
<tex2html_verbatim_mark>Your program has to design a conveyor belt system that maximizes the total amount of minerals mined,i.e., the sum of the amount of yeyenum transported to the yeyenum refinery and the amount of bloggium transported to the bloggium refinery.
Input
The input contains several blocks of test cases. Each case begins with a line containing two integers: the number 1
n
500 <tex2html_verbatim_mark>of rows, and the number 1
m
500 <tex2html_verbatim_mark>of columns. The next n <tex2html_verbatim_mark>lines describe the amount of yeyenum that can be found in the cells. Each of these n <tex2html_verbatim_mark>lines contains m <tex2html_verbatim_mark>integers. The first line corresponds to the northernmost row; the first integer of each line corresponds to the westernmost cell of the row. The integers are between 0 and 1000. The next n <tex2html_verbatim_mark>lines describe in a similar fashion theamount of bloggium found in the cells.
The input is terminated by a block with n = m = 0 <tex2html_verbatim_mark>.
Output
For each test case, you have to output a single integer on a separate line: the maximum amount of mineralsthat can be mined.
Sample Input
4 4
0 0 10 9
1 3 10 0
4 2 1 3
1 1 20 0
10 0 0 0
1 1 1 30
0 0 5 5
5 10 10 10
0 0
Sample Output
98
dpw[row][col] = yey[row][col] + max(dpn[row - 1][col], dpw[row - 1][col]);
dpn[row][col] = blo[row][col] + max(dpn[row][col - 1], dpw[row][col - 1]);
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MAX = ;
int N, M;
int yey[MAX][MAX], blo[MAX][MAX];
int syey[MAX][MAX],sblo[MAX][MAX];
int dpw[MAX][MAX], dpn[MAX][MAX]; int main()
{
//freopen("sw.in","r",stdin);
while(~scanf("%d%d", &N, &M) && ( N + M)) {
memset(syey, , sizeof(yey));
memset(sblo, , sizeof(blo)); for(int i = ; i <= N; ++i) {
for(int j = ; j <= M; ++j) {
scanf("%d", &yey[i][j]);
yey[i][j] += yey[i][j - ];
}
} for(int i = ; i <= N; ++i) {
for(int j = ; j <= M; ++j) {
scanf("%d", &blo[i][j]);
blo[i][j] += blo[i - ][j];
}
} for(int row = ; row <= N; ++row) {
for(int col = ; col <= M; ++col) {
dpw[row][col] = yey[row][col] + max(dpn[row - ][col], dpw[row - ][col]);
dpn[row][col] = blo[row][col] + max(dpn[row][col - ], dpw[row][col - ]);
}
} printf("%d\n", max(dpw[N][M], dpn[N][M]));
}
//cout << "Hello world!" << endl;
return ;
}
LA 3350的更多相关文章
- leggere la nostra recensione del primo e del secondo
La terra di mezzo in trail running sembra essere distorto leggermente massima di recente, e gli aggi ...
- Le lié à la légèreté semblait être et donc plus simple
Il est toutefois vraiment à partir www.runmasterfr.com/free-40-flyknit-2015-hommes-c-1_58_59.html de ...
- Mac Pro 使用 ll、la、l等ls的别名命令
在 Linux 下习惯使用 ll.la.l 等ls别名的童鞋到 mac os 可就郁闷了~~ 其实只要在用户目录下建立一个脚本“.bash_profile”, vim .bash_profile 并输 ...
- Linux中的动态库和静态库(.a/.la/.so/.o)
Linux中的动态库和静态库(.a/.la/.so/.o) Linux中的动态库和静态库(.a/.la/.so/.o) C/C++程序编译的过程 .o文件(目标文件) 创建atoi.o 使用atoi. ...
- Mac OS使用ll、la、l等ls的别名命令
在linux下习惯使用ll.la.l等ls别名的童鞋到mac os可就郁闷了-- 其实只要在用户目录下建立一个脚本“.bash_profile”,并输入以下内容即可: alias ll='ls -al ...
- .Uva&LA部分题目代码
1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...
- 获取在线人数 CNZZ 和 51.la
string Cookies = string.Empty; /// <summary> /// 获取在线人数 (51.la统计器) /// </summary> /// &l ...
- BNU OJ 33691 / LA 4817 Calculator JAVA大数
留着当个模板用,在BNU上AC,在LA上RE……可能是java的提交方式不同??? 数和运算符各开一个栈. 表达式从左到右扫一遍,将数存成大数,遇到数压在 数的栈,运算符压在 运算符的栈,每当遇到右括 ...
- LA 3295 (计数 容斥原理) Counting Triangles
如果用容斥原理递推的办法,这道题确实和LA 3720 Highway很像. 看到大神们写的博客,什么乱搞啊,随便统计一下,这真的让小白很为难,于是我决定用比较严格的语言来写这篇题解. 整体思路很简单: ...
随机推荐
- ode.js 版本控制 nvm 和 n 使用 及 nvm 重启终端失效的解决方法
今天的话题包括2个部分 node.js 下使用 nvm 或者 n 来进行版本控制 nvm 安装node.js 版本后,重启终端 node , npm 环境变量失效 第一部分 用什么来管理 node.j ...
- Android系统编译脚本理解
android源码编译步骤: 1. repo sync 代码(下载代码) 2.start branch(用哪个分支,git相关) 3. 到根目录(android目录) $cd android/ 4. ...
- Java动态替换InetAddress中DNS的做法简单分析2
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.i ...
- 解压vmlinuz和解压initrd(initramfs)
有时就算只得到一个Linux kernel的rpm包或者直接是编译后的vmlinuz和initrd的binary文件,也需要了解其中的一些细节,可能需要去查找这些binary有没有将我想要的patch ...
- [转]WinExec、ShellExecute和CreateProcess及返回值判断方式
[转]WinExec.ShellExecute和CreateProcess及返回值判断方式 http://www.cnblogs.com/ziwuge/archive/2012/03/12/23924 ...
- 霍夫变换(hough transform)
x-y轴坐标:y=kx+b k-b轴坐标:b=-xk+y θ-r轴坐标:
- Netsharp快速入门(之6) 基础档案(创建导航菜单)
作者:秋时 杨昶 时间:2014-02-15 转载须说明出处 1.1 创建导航菜单 1.在Demo节点下,录入路径名称,并在下方录入两个导航页签名 2.建立分类,只要填路径名 3.双击基 ...
- 项目部署之VPN+端口映射
背景:出差开发项目,需要在客户那里部署基本成型的系统.这套系统需要一个公网的ip地址(一个后台管理系统,使用花生壳提供域名服务.一个公网的tcp server,java io实现),但是客户那里无法提 ...
- TCP 粘包/拆包问题
简介 TCP 是一个’流’协议,所谓流,就是没有界限的一串数据. 大家可以想想河里的流水,是连成一片的.期间并没有分界线, TCP 底层并不了解上层业务数据的具体含义 ,它会根据 TCP 缓冲区 ...
- 【转载】Web应用工作原理
问题描述: Web应用工作原理 问题解决: 参考资料:http://blog.csdn.net/lcore/article/details/8964642 ...