这题利用二叉堆维持堆性质的办法来维持Young氏矩阵的性质,题目提示中写得很清楚,不过确实容易转不过弯来。

a,b两问很简单。直接看c小问:

按照Young氏矩阵的性质,最小值肯定在左上角取得,问题在于取出最小值后如何保持矩阵的性质。可以参照max_heapify中的做法,先取出最小值,然后将矩阵左上角置为最大值,这样左上角处的元素必然导致Young氏矩阵的性质违背,于是考虑该元素右边的元素和该元素下边的元素,问题是该与右边元素交换还是与下边元素交换呢?可以发现,如果与T(右)和T(下)中较小的一个元素交换,可以使得另一元素所在的行或列恢复Young氏矩阵性质,这样就把待调整的矩阵的规模减小到了(m - 1) X n 或 m X (n - 1)。递归运行这个过程,直到待调整的矩阵为空,因为每次都将m或n减小1,直到它们都减小到零为止,可知时间复杂度为O(m + n)

d小问实现插入过程,还是参照二叉堆中的插入过程,把新元素插入到矩阵末尾,然后向左上角调整直到到达合适的位置。调整过程的思路其实跟c中的思路类似。这次是与新元素左边元素和上边元素比较。可以发现,如果我把新元素和T(左)、T(上)中较大的元素进行交换,可以使得另一个元素所在的行(或列)恢复Young氏矩阵性质,于是同样把待调整的矩阵规模减小到(m - 1) X n 或m X (n - 1)

e比较直接,extract_min需要线性时间O(n),共有n^2个元素,于是复杂度就是O(n^3)

f问比较难想,我折腾了好久。关键是查找位置是从矩阵的左下角开始。这位置很巧妙,如果k大于它,那它所在的列就不用找了,如果k小于它,那它所在的行就不用找了,也是逐次减小矩阵规模查找元素。

部分实现的源码如下:

#include<iostream>
#include<vector>
using namespace std;
enum class Direction{DOWN, RIGHT, UP, LEFT, OVER};
void extract_helper(vector<vector<int> > &Young, int m, int n){
Direction d = Direction::OVER;
int val = Young[m][n];
if (m + 1 < Young.size() && val > Young[m + 1][n]){
d = Direction::DOWN;
val = Young[m + 1][n];
}
if (n + 1 < Young[0].size() && val > Young[m][n + 1]){
d = Direction::RIGHT;
val = Young[m][n + 1];
}
switch (d){
case Direction::DOWN:
swap(Young[m][n], Young[m + 1][n]);
extract_helper(Young, m + 1, n);
break;
case Direction::RIGHT:
swap(Young[m][n], Young[m][n + 1]);
extract_helper(Young, m, n + 1);
break;
case Direction::OVER:
break;
}
return;
}
int extract_min(vector<vector<int>> &Young){
int min = Young[0][0];
Young[0][0] = INT_MAX;
int m = 0;
int n = 0;
extract_helper(Young, m, n);
return min;
} void insert_helper(vector<vector<int>> &Young, int m, int n){
Direction d = Direction::OVER;
int val = Young[m][n];
if (m - 1 >= 0 && val < Young[m - 1][n]){
val = Young[m - 1][n];
d = Direction::UP;
}
if (n - 1 >= 0 && val < Young[m][n - 1]){
val = Young[m][n - 1];
d = Direction::LEFT;
}
switch (d){
case Direction::UP:
swap(Young[m][n], Young[m - 1][n]);
insert_helper(Young, m - 1, n);
break;
case Direction::LEFT:
swap(Young[m][n], Young[m][n - 1]);
insert_helper(Young, m, n - 1);
break;
case Direction::OVER:
break;
}
}
void insert(vector<vector<int>> &Young, int key){
int M = Young.size();
int N = Young[0].size();
Young[M - 1][N - 1] = key;
int m = M - 1;
int n = N - 1;
insert_helper(Young, m, n);
}
void Young_sort(vector<vector<int>> &Young, vector<int>& result){
while (Young[0][0] != INT_MAX){
int key = extract_min(Young);
result.push_back(key);
}
}

  

算法导论 第六章 思考题6-3 Young氏矩阵的更多相关文章

  1. 算法导论 第六章 思考题 6-3 d叉堆

    d叉堆的实现相对于二叉堆变化不大,首先看它如何用数组表示. 考虑一个索引从1开始的数组,一个结点i最多可以有d个子结点,编号从id - (d - 2) 到 id + 1. 从而可以知道一个结点i的父结 ...

  2. 算法导论 第六章 堆排序(python)

    6.1堆 卫星数据:一个带排序的的数通常是有一个称为记录的数据集组成的,每一个记录有一个关键字key,记录的其他数据称为卫星数据. 原地排序:在排序输入数组时,只有常数个元素被存放到数组以外的空间中去 ...

  3. 算法导论 第六章 2 优先队列(python)

    优先队列:     物理结构: 顺序表(典型的是数组){python用到list}     逻辑结构:似完全二叉树 使用的特点是:动态的排序..排序的元素会增加,减少#和快速排序对比 快速一次排完 增 ...

  4. 《算法导论》第二章demo代码实现(Java版)

    <算法导论>第二章demo代码实现(Java版) 前言 表示晚上心里有些不宁静,所以就写一篇博客,来缓缓.囧 拜读<算法导论>这样的神作,当然要做一些练习啦.除了练习题与思考题 ...

  5. 《算法》第六章部分程序 part 7

    ▶ 书中第六章部分程序,加上自己补充的代码,包括全局最小切分 Stoer-Wagner 算法,最小权值二分图匹配 ● 全局最小切分 Stoer-Wagner 算法 package package01; ...

  6. 《算法》第六章部分程序 part 6

    ▶ 书中第六章部分程序,包括在加上自己补充的代码,包括二分图最大匹配(最小顶点覆盖)的交替路径算法和 HopcroftKarp 算法 ● 二分图最大匹配(最小顶点覆盖)的交替路径算法 package ...

  7. 《算法》第六章部分程序 part 5

    ▶ 书中第六章部分程序,包括在加上自己补充的代码,网络最大流 Ford - Fulkerson 算法,以及用到的流量边类和剩余流量网络类 ● 网络最大流 Ford - Fulkerson 算法 pac ...

  8. 为什么我要放弃javaScript数据结构与算法(第六章)—— 集合

    前面已经学习了数组(列表).栈.队列和链表等顺序数据结构.这一章,我们要学习集合,这是一种不允许值重复的顺序数据结构. 本章可以学习到,如何添加和移除值,如何搜索值是否存在,也可以学习如何进行并集.交 ...

  9. 《算法》第六章部分程序 part 8

    ▶ 书中第六章部分程序,加上自己补充的代码,包括单纯形法求解线性规划问题 ● 单纯形法求解线性规划问题 // 表上作业法,I 为单位阵,y 为对偶变量,z 为目标函数值 // n m 1 // ┌── ...

随机推荐

  1. [sso] 单点登录认证流程

    一.流程说明 第一步:访问cas过滤链接ssoLogin,拼凑定向到 CAS_SERVER 获取ticket的URL 第二步:CAS_SERVER校验用户信息,生成Ticket 第三步:重新定向到访问 ...

  2. var isObj = length === undefined || i

    这个其实是因为你前面那个===是肯定为false导致的,所以执行到了i那一步了var length=undefined;var a=length===undefined || i;这样你不定义i也是不 ...

  3. Qt之属性系统

    简述 Qt提供一个类似于其它编译器供应商提供的复杂属性系统(Property System).然而,作为一个编译器和平台无关的库,Qt不能够依赖于那些非标准的编译器特性,比如:__property或者 ...

  4. Java 基础知识点(必知必会其二)

    1.如何将数字输出为每三位逗号分隔的格式,例如“1,234,467”? package com.Gxjun.problem; import java.text.DecimalFormat; impor ...

  5. Java 正则表达式 向前、向后匹配

    //向后匹配 String a = "I paid $90 for 10 oranges, 12 pears and 8 apples. I saved $5 on "; Patt ...

  6. backbonejs中的模型篇(三)

    一:在模型中使用嵌套属性 Backbone的扩展插件 Backbone-Nested下载并添加引用 1:定义一个新的模型对象,使用Backbone.NestedModel作为其基类对象 var _mo ...

  7. bug数量问题研究

    最近感觉很扯蛋的事情就是测试人员提bug的问题.先说下前提,公司测试会以提bug数量来做为一部分员工绩效的成份.再说一下公司从需求到开发 到测试,先是需求出一个文档,开发根据文档做功能的开发,然后测试 ...

  8. matalab(绘图)

    plot(x) % 绘图语句F = getframe(gcf); %抓取图片imwrite(F.cdata,'myfile.jpg'); %保存图片 然后就可以在默认路径也就是matlab工作目录中找 ...

  9. 你需要知道的三个 CSS3技巧(转)

    1. 在CSS中用attr()显示HTML属性值 attr()功能早在CSS 2.1标准中就已经出现,但现在才开始普遍流行.它提供了一个巧妙的方法在CSS中使用HTML标签上的属性,在很多情况下都能帮 ...

  10. async 和await

    这个是.NET 4.5的特性,所以要求最低.NET版本为4.5. 看很多朋友还是使用的Thread来使用异步多线程操作,基本上看不见有使用Async.Await进行异步编程的.各有所爱吧,其实都可以. ...