Awesome Reinforcement Learning

A curated list of resources dedicated to reinforcement learning.

We have pages for other topics: awesome-rnnawesome-deep-visionawesome-random-forest

Maintainers: Hyunsoo KimJiwon Kim

We are looking for more contributors and maintainers!

Contributing

Please feel free to pull requests

Table of Contents

Codes

Theory

Lectures

Books

  • Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction [Book] [Code]
  • Csaba Szepesvari, Algorithms for Reinforcement Learning [Book]
  • David Poole and Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents [Book Chapter]
  • Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic Programming [Book (Amazon)] [Summary]
  • Mykel J. Kochenderfer, Decision Making Under Uncertainty: Theory and Application [Book (Amazon)]

Surveys

  • Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore, Reinforcement Learning: A Survey, JAIR, 1996. [Paper]
  • S. S. Keerthi and B. Ravindran, A Tutorial Survey of Reinforcement Learning, Sadhana, 1994. [Paper]
  • Matthew E. Taylor, Peter Stone, Transfer Learning for Reinforcement Learning Domains: A Survey, JMLR, 2009. [Paper]
  • Jens Kober, J. Andrew Bagnell, Jan Peters, Reinforcement Learning in Robotics, A Survey, IJRR, 2013. [Paper]
  • Michael L. Littman, "Reinforcement learning improves behaviour from evaluative feedback." Nature 521.7553 (2015): 445-451. [Paper]
  • Marc P. Deisenroth, Gerhard Neumann, Jan Peter, A Survey on Policy Search for Robotics, Foundations and Trends in Robotics, 2014. [Book]

Papers / Thesis

  • Foundational Papers

    • Marvin Minsky, Steps toward Artificial Intelligence, Proceedings of the IRE, 1961. [Paper]

      • discusses issues in RL such as the "credit assignment problem"
    • Ian H. Witten, An Adaptive Optimal Controller for Discrete-Time Markov Environments, Information and Control, 1977. [Paper]
      • earliest publication on temporal-difference (TD) learning rule.
  • Methods

    • Dynamic Programming (DP):

      • Christopher J. C. H. Watkins, Learning from Delayed Rewards, Ph.D. Thesis, Cambridge University, 1989. [Thesis]
    • Monte Carlo:
      • Andrew Barto, Michael Duff, Monte Carlo Inversion and Reinforcement Learning, NIPS, 1994. [Paper]
      • Satinder P. Singh, Richard S. Sutton, Reinforcement Learning with Replacing Eligibility Traces, Machine Learning, 1996. [Paper]
    • Temporal-Difference:
      • Richard S. Sutton, Learning to predict by the methods of temporal differences. Machine Learning 3: 9-44, 1988.[Paper]
    • Q-Learning (Off-policy TD algorithm):
      • Chris Watkins, Learning from Delayed Rewards, Cambridge, 1989. [Thesis]
    • Sarsa (On-policy TD algorithm):
      • G.A. Rummery, M. Niranjan, On-line Q-learning using connectionist systems, Technical Report, Cambridge Univ., 1994. [Report]
      • Richard S. Sutton, Generalization in Reinforcement Learning: Successful examples using sparse coding, NIPS, 1996. [Paper]
    • R-Learning (learning of relative values)
      • Andrew Schwartz, A Reinforcement Learning Method for Maximizing Undiscounted Rewards, ICML, 1993.[Paper-Google Scholar]
    • Function Approximation methods (Least-Sqaure Temporal Difference, Least-Sqaure Policy Iteration)
      • Steven J. Bradtke, Andrew G. Barto, Linear Least-Squares Algorithms for Temporal Difference Learning, Machine Learning, 1996. [Paper]
      • Michail G. Lagoudakis, Ronald Parr, Model-Free Least Squares Policy Iteration, NIPS, 2001. [Paper] [Code]
    • Policy Search / Policy Gradient
      • Richard Sutton, David McAllester, Satinder Singh, Yishay Mansour, Policy Gradient Methods for Reinforcement Learning with Function Approximation, NIPS, 1999. [Paper]
      • Jan Peters, Sethu Vijayakumar, Stefan Schaal, Natural Actor-Critic, ECML, 2005. [Paper]
      • Jens Kober, Jan Peters, Policy Search for Motor Primitives in Robotics, NIPS, 2009. [Paper]
      • Jan Peters, Katharina Mulling, Yasemin Altun, Relative Entropy Policy Search, AAAI, 2010. [Paper]
      • Freek Stulp, Olivier Sigaud, Path Integral Policy Improvement with Covariance Matrix Adaptation, ICML, 2012.[Paper]
      • Nate Kohl, Peter Stone, Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion, ICRA, 2004.[Paper]
      • Marc Deisenroth, Carl Rasmussen, PILCO: A Model-Based and Data-Efficient Approach to Policy Search, ICML, 2011. [Paper]
      • Scott Kuindersma, Roderic Grupen, Andrew Barto, Learning Dynamic Arm Motions for Postural Recovery, Humanoids, 2011. [Paper]
    • Hierarchical RL
      • Richard Sutton, Doina Precup, Satinder Singh, Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning, Artificial Intelligence, 1999. [Paper]
      • George Konidaris, Andrew Barto, Building Portable Options: Skill Transfer in Reinforcement Learning, IJCAI, 2007.[Paper]
    • Deep Learning + Reinforcement Learning (A sample of recent works on DL+RL)
      • V. Mnih, et. al., Human-level Control through Deep Reinforcement Learning, Nature, 2015. [Paper]
      • Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, Xiaoshi Wang, Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, NIPS, 2014. [Paper]
      • Sergey Levine, Chelsea Finn, Trevor Darrel, Pieter Abbeel, End-to-End Training of Deep Visuomotor Policies. ArXiv, 16 Oct 2015. [ArXiv]
      • Tom Schaul, John Quan, Ioannis Antonoglou, David Silver, Prioritized Experience Replay, ArXiv, 18 Nov 2015.[ArXiv]
      • Hado van Hasselt, Arthur Guez, David Silver, Deep Reinforcement Learning with Double Q-Learning, ArXiv, 22 Sep 2015. [ArXiv]
      • Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, Asynchronous Methods for Deep Reinforcement Learning, ArXiv, 4 Feb 2016.[ArXiv]

Applications

Game Playing

  • Traditional Games

    • Backgammon - "TD-Gammon" game play using TD(λ) (Tesauro, ACM 1995) [Paper]
    • Chess - "KnightCap" program using TD(λ) (Baxter, arXiv 1999) [arXiv]
    • Chess - Giraffe: Using deep reinforcement learning to play chess (Lai, arXiv 2015) [arXiv]
  • Computer Games

Robotics

  • Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion (Kohl, ICRA 2004) [Paper]
  • Robot Motor SKill Coordination with EM-based Reinforcement Learning (Kormushev, IROS 2010) [Paper] [Video]
  • Generalized Model Learning for Reinforcement Learning on a Humanoid Robot (Hester, ICRA 2010) [Paper] [Video]
  • Autonomous Skill Acquisition on a Mobile Manipulator (Konidaris, AAAI 2011) [Paper] [Video]
  • PILCO: A Model-Based and Data-Efficient Approach to Policy Search (Deisenroth, ICML 2011) [Paper]
  • Incremental Semantically Grounded Learning from Demonstration (Niekum, RSS 2013) [Paper]
  • Efficient Reinforcement Learning for Robots using Informative Simulated Priors (Cutler, ICRA 2015) [Paper] [Video]

Control

  • An Application of Reinforcement Learning to Aerobatic Helicopter Flight (Abbeel, NIPS 2006) [Paper] [Video]
  • Autonomous helicopter control using Reinforcement Learning Policy Search Methods (Bagnell, ICRA 2011) [Paper]

Operations Research

  • Scaling Average-reward Reinforcement Learning for Product Delivery (Proper, AAAI 2004) [Paper]
  • Cross Channel Optimized Marketing by Reinforcement Learning (Abe, KDD 2004) [Paper]

Human Computer Interaction

  • Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System (Singh, JAIR 2002)[Paper]

Tutorials / Websites

Online Demos

Awesome Reinforcement Learning的更多相关文章

  1. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  2. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  3. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  4. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  5. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  6. Open source packages on Deep Reinforcement Learning

    智能车 self driving car + 强化学习 reinforcement learning + 神经网络 模拟 https://github.com/MorvanZhou/my_resear ...

  7. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  8. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  9. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  10. (转) Deep Learning in a Nutshell: Reinforcement Learning

    Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettm ...

随机推荐

  1. iphone获取当前流量信息

    通过读取系统网络接口信息,获取当前iphone设备的流量相关信息,统计的是上次开机至今的流量信息. 代码 悦德财富:https://yuedecaifu.com 1 2 3 4 5 6 7 8 9 1 ...

  2. SharePoint开发 - 使用Session(代码修改webconfig)

    博客地址 http://blog.csdn.net/foxdave SharePoint启用Session可以使用Powershell,戳这里:可以修改webconfig. 本篇叙述的重点是通过fea ...

  3. JS获取客户端Mac和IP

    JS获取硬件信息是通过ActiveX进行获取的,因此只能IE浏览器支持,火狐不支持 而且必须降低浏览器安全级别,因此不到万不得以一般不会采用这种方式 <html> <head> ...

  4. Android 对 properties文件的读写操作

    -. 放在res中的properties文件的读取,例如对放在assets目录中的setting.properties的读取:PS:之所以这里只是有读取操作,而没有写的操作,是因为我发现不能对res下 ...

  5. C++ Frequently asking question

    http://stackoverflow.com/questions/14295884/c-new-empty-project-how-to-create-it-add-main-method-and ...

  6. BZOJ 2467 生成树

    当(n-1)条中间的边:4^(n-1)*4*C(n-1,n). ......以此类推Σ. f[n]=Σ(i=0..n-1)4^(i+1)*(n-i)*C(n,i) =Σ(i=0..n-1)4^(i+1 ...

  7. Linux怎么使用添加的新硬盘

    一.磁盘分区 装过系统后第一块磁盘的设备号是/dev/sda,在你添加一个新的磁盘后一般情况下是/dev/sdb *******进入fdisk界面***** # fdisk /dev/sdbDevic ...

  8. Android库Volley的使用介绍

    Android Volley 是Google开发的一个网络lib,可以让你更加简单并且快速的访问网络数据.Volley库的网络请求都是异步的,你不必担心异步处理问题. Volley的优点: 请求队列和 ...

  9. React Native 弹性布局FlexBox

    React Native采用一中全新的布局方式:FlexBox(弹性布局).可以很方便的实现各种复杂布局,是全新的针对web和移动开发布局的一种实现方式. 何为FlexBox? 完整名称为:the f ...

  10. ios oc ui 路径和颜色设置--崩溃解决方案

    - (id)init{ self = [super init]; if (self) { _lineColor = CGColorCreateCopy([UIColor whiteColor].CGC ...