前言

本文的资料和图片均来自 \(\texttt{OI-Wiki}\)。

引入

题目描述

在一个操场上摆放着一排 \(N\) 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的 \(2\) 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。

试设计一个算法,计算出将 \(N\) 堆石子合并成一堆的最小得分。

\((N \leq 40000)\)

过程

我们看到这个题,自然而然会想到区间 DP,即朴素的做法。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll r[600], g[600];
ll dp[600][600]; int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; ++ i) {
scanf("%lld", &r[i]);
r[i + n] = r[i];
g[i] = g[i - 1] + r[i];
dp[i][i] = 0;
}
for (int i = n + 1; i <= 2 * n; ++ i) {
dp[i][i] = 0;
g[i] = g[i - 1] + r[i];
}
for (int l = 1; l < n; ++ l) {
for (int i = 1, j = i + l; i < n * 2 && j <= n * 2; ++ i, j = i + l) {
dp[i][j] = 100000000;
for (int k = i; k < j; ++ k) {
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + g[j] - g[i - 1]);
}
}
}
ll minn = 0x3f3f3f3f;
for (int i = 1; i <= n; ++ i) {
minn = min(minn, dp[i][i + n - 1]);
}
printf("%lld", minn);
return 0;
}

交上去后,你会发现,RE 了 \(7\) 个。

为什么?

因为 \(n\) 太大了,二维数组开不下,其次就算是用了什么不为人知的手段开下了这么大的数组,\(n^2\) 的复杂度也铁定超时。

这可怎么办呢?

下面介绍一种专门处理石子合并这类问题的算法——Garsia-Wachs 算法

Garsia-Wachs 算法

Garsia-Wachs 的步骤如下:

在序列的两端设置极大值。

在序列中找到前三个连续的权重值 \(x, y, z\) 使得 \(x \leq z\)。因为序列结尾的最大值大于之前的任意两个有限值,所以总是存在这样的三元组。

从序列中移除 \(x\) 和 \(y\),并在原来 \(x\) 的位置以前大于或等于 \(x+y\) 且距 \(x\) 最近的值的右边重新插入元素,元素值为 \(x+y\)。因为左端最大值的存在,所以总是存在这样的位置。

为了有效地实现这一阶段,该算法可以在任何平衡二叉查找树结构中维护当前值序列。这样的结构允许我们在对数时间内移除 \(x\) 和 \(y\),并重新插入新节点 \(x + y\)。

在每一步中,数组中位于偶数索引上直到 \(y\) 值的权重形成了一个递减序列,位于奇数索引位的权重形成另一个递减序列。因此,重新插入 \(x+y\) 的位置可以通过在对数时间内对这两个递减序列使用平衡树执行两次二分查找找到。通过从前一个三元组 \(z\) 值开始的线性顺序搜索,我们可以在总线性时间复杂度内执行对满足 \(x \leq z\) 的第一个位置的搜索。

如果实在不会平衡树,vectorinserterase 操作也是个不错的选择呢!

Garsia-Wachs 算法的总时间复杂度为 \(O(n\log n)\),时间复杂度证明?我只能说,学 OI 记住结论就好了,证明,那是数学要考虑的事,不是 OI 要考虑的事 考试又不会让你证明时间复杂度

至于正确性的证明我也不会= =,这个算法应用范围十分有限,因此学的价值不是很高,“会用” + “知道有这个东西” 就行了

关于上面那道引入题的代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; inline ll read() {
ll x = 0;
int fg = 0;
char ch = getchar();
while (ch < '0' || ch > '9') {
fg |= (ch == '-');
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
return fg ? ~x + 1 : x;
} const int N = 4e4 + 5; int n, ans;
vector<int> g; int merge() {
int k = g.size() - 2;
for (int i = 0; i <= k; ++ i) {
if (g[i] <= g[i + 2]) {
k = i;
break;
}
}
int tmp = g[k] + g[k + 1];
g.erase(g.begin() + k);
g.erase(g.begin() + k);
int t = -1;
for (int i = k - 1; i >= 0; -- i) {
if (g[i] >= tmp) {
t = i;
break;
}
}
g.insert(g.begin() + t + 1, tmp);
return tmp;
} int main() {
n = read();
for (int i = 1; i <= n; ++ i) {
g.emplace_back(read());
}
for (int i = 1; i < n; ++ i) {
ans += merge();
}
printf("%d\n", ans);
return 0;
}

「学习笔记」Garsia-Wachs 算法的更多相关文章

  1. 「学习笔记」Min25筛

    「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}​\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK ...

  2. 「学习笔记」字符串基础:Hash,KMP与Trie

    「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...

  3. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  4. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  5. 「学习笔记」Treap

    「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...

  6. 「学习笔记」平衡树基础:Splay 和 Treap

    「学习笔记」平衡树基础:Splay 和 Treap 点击查看目录 目录 「学习笔记」平衡树基础:Splay 和 Treap 知识点 平衡树概述 Splay 旋转操作 Splay 操作 插入 \(x\) ...

  7. 「学习笔记」wqs二分/dp凸优化

    [学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...

  8. 「学习笔记」ST表

    问题引入 先让我们看一个简单的问题,有N个元素,Q次操作,每次操作需要求出一段区间内的最大/小值. 这就是著名的RMQ问题. RMQ问题的解法有很多,如线段树.单调队列(某些情况下).ST表等.这里主 ...

  9. 「学习笔记」递推 & 递归

    引入 假设我们想计算 \(f(x) = x!\).除了简单的 for 循环,我们也可以使用递归. 递归是什么意思呢?我们可以把 \(f(x)\) 用 \(f(x - 1)\) 表示,即 \(f(x) ...

  10. 「学习笔记」min_25筛

    前置姿势 魔力筛 其实不看也没关系 用途和限制 在\(\mathrm{O}(\frac{n^{0.75}}{\log n})\)的时间内求出一个积性函数的前缀和. 所求的函数\(\mathbf f(x ...

随机推荐

  1. 势如破竹的雷霆两招,微服务进阶Serverless

    ​在应用开发中,服务器的开发一直是最重要的部分之一.在服务器开发不断演进过程中,我们可以将它简单分为5个阶段: 物理机阶段->虚拟机阶段->云计算阶段->容器阶段->当前的Se ...

  2. docker中跑MySQL

    mkdir xxx 创建一个目录 cd xxx 进入该目录 运行: sudo docker run -p 3306:3306 --name mymysql \ --restart=always -v  ...

  3. [ElasticSearch]常用URL路径

    https://127.0.0.1:9200/ http://127.0.0.1:9200/_all?pretty https://127.0.0.1:9200/_cluster/health?pre ...

  4. bash shell 无法使用 perl 正则

    哈喽大家好,我是咸鱼.今天跟大家分享一个关于正则表达式的案例,希望能够对你有所帮助 案例现象 前几天有一个小伙伴在群里求助,说他这个 shell 脚本有问题,让大家帮忙看看   可以看到,这个脚本首先 ...

  5. Xxl-job安装部署以及SpringBoot集成Xxl-job使用

    1.安装Xxl-job: 可以使用docker拉取镜像部署和源码编译两种方式,这里选择源码编译安装. 代码拉取地址: https://github.com/xuxueli/xxl-job/tree/2 ...

  6. Python 将函数存储在模块中

    将函数存储在模块中 将函数存储在被称为模块的独立文件中,在将模块导入到主程序中 import语句允许在当前运行的程序文件中使用模块中的代码 通过将函数存储在独立的文件中,可影藏程序的代码细节,将重点放 ...

  7. map和multimap

    map相对于set区别,map具有键值和实值,所有元素根据键值自动排序,pair的第一个值被称为键值key,pair的第二个值被称为实值value.map也是以红黑树为底层实现机制,根据key进行排序 ...

  8. 基于APM模式的异步实现及跨线程操作窗体或控件方法的实现示例

    最近在一家某电力外派公司开发相关于GIS的功能,在实现代码的过程中出现了一些常见的问题比如: 1.跨线程执行窗体或控件操作(直接使用委拖) 2.异步模式执行某长时间耗时方法 经过一系列摸索可算找到解决 ...

  9. 2023-01-10:智能机器人要坐专用电梯把货物送到指定地点, 整栋楼只有一部电梯,并且由于容量限制智能机器人只能放下一件货物, 给定K个货物,每个货物都有所在楼层(from)和目的楼层(to),

    2023-01-10:智能机器人要坐专用电梯把货物送到指定地点, 整栋楼只有一部电梯,并且由于容量限制智能机器人只能放下一件货物, 给定K个货物,每个货物都有所在楼层(from)和目的楼层(to), ...

  10. 2022-12-05:部门工资前三高的所有员工。编写一个SQL查询找出每个部门中收入前三高的员工 。 +------------+----------+--------+ | Department |

    2022-12-05:部门工资前三高的所有员工.编写一个SQL查询找出每个部门中收入前三高的员工 . ±-----------±---------±-------+ | Department | Em ...