【阅读笔记】低照度图像增强-《Fast efficient algorithm for enhancement of low lighting video》
本文介绍的是一种比较实用的低照度图像增强效果很好的方法,Xuan Dong论文《Fast efficient algorithm for enhancement of low lighting video》
概述
低光照图像取反(255 - 低光照图像),和有雾图像存在一些共性,比如在天空或者遥远的背景这些地方,亮度值都是很高的,但在近景的 RGB 三通道中至少有一个亮度值很低。作者提出直接用去雾算法对低光照图像的反转图像处理,去雾结果再取反得到低照度增强结果。

低照度图像增强算法
大气散射模型
大多透雾算法基于大气散射模型,模型如下:
I
(
x
)
=
J
(
x
)
t
(
x
)
+
A
(
1
−
t
(
x
)
)
I (x) = J (x)t(x) + A(1 − t(x))
I(x)=J(x)t(x)+A(1−t(x))
其中,
I
(
x
)
I(x)
I(x)表示含雾图,
J
(
x
)
J(x)
J(x)表示无雾图,
A
A
A表示大气光模型,
t
(
x
)
=
e
−
β
d
(
x
)
t(x)=e^{- \beta d(x)}
t(x)=e−βd(x)表示传输率矩阵,
β
\beta
β 表示大气散射系数,
d
(
x
)
d(x)
d(x)表示图像区域的景深。雾越浓,到达相机的物体反射的光越少,即传输率越小。
上式可以改写为:
J
(
x
)
=
I
(
x
)
−
A
t
(
x
)
+
A
J (x) = \frac{I (x) - A}{t(x)}+A
J(x)=t(x)I(x)−A+A
为了得到
J
(
x
)
J(x)
J(x),重点在估计
A
A
A和
t
(
x
)
t(x)
t(x)。
暗通道先验知识:
在大部分无雾图像的无天空区域,像素中至少存在一个颜色通道存在很低非常低的亮度值。这个最低的亮度值几乎等同于0。因此,对于一个观测图像J,其暗通道趋近于0,即
J
d
a
r
k
(
X
)
=
m
i
n
y
∈
Ω
(
x
)
(
m
i
n
c
∈
r
,
g
,
b
J
c
(
y
)
)
→
0
J^{dark}(X) = min_{y \in \Omega (x)}(min_{c \in {r,g,b }} J^{c}(y)) \to 0
Jdark(X)=miny∈Ω(x)(minc∈r,g,bJc(y))→0
其中,
J
c
J^{c}
Jc表示彩色图像每个通道,
Ω
(
x
)
\Omega(x)
Ω(x)表示以
x
x
x为中心的窗口
透雾算法
基于大气散射模型,透雾模型的方法步骤如下:
1、从雾图I (x) 估计传输率矩阵t(x)
2、估计大气光值A
3、通过公式估计无雾图J(x)
首先求出每个像素RGB分量中的最小值,存入一副和原始图像大小相同的灰度图中,然后再对这幅灰度图进行最小值滤波,滤波的半径由窗口大小决定,一般有
W
i
n
d
o
w
S
i
z
e
=
2
∗
R
a
d
i
u
s
+
1
WindowSize = 2 * Radius + 1
WindowSize=2∗Radius+1
将雾模型
I
(
x
)
=
J
(
x
)
t
(
x
)
+
A
(
1
−
t
(
x
)
)
I (x) = J (x)t(x) + A(1 − t(x))
I(x)=J(x)t(x)+A(1−t(x))
处理为:
I
c
(
x
)
A
c
=
J
c
(
x
)
A
c
t
(
x
)
+
1
−
t
(
x
)
\frac{I^{c} (x)}{A^{c}} = \frac{J^{c} (x)}{A^{c}}t(x) + 1 − t(x)
AcIc(x)=AcJc(x)t(x)+1−t(x)
假设在窗口内透射率$ t(x)
为常数,定义为
为常数,定义为
为常数,定义为\tilde t(x)
,
,
,A$值已知。对上式求两次最小值运算,得到
m
i
n
y
∈
Ω
(
x
)
(
m
i
n
c
I
c
(
y
)
A
c
)
=
t
~
(
x
)
m
i
n
y
∈
Ω
(
x
)
(
m
i
n
c
J
c
(
y
)
A
c
)
+
1
−
t
~
(
x
)
\underset {y \in \Omega (x)}{min}(\underset{c}{min} \frac{I^{c} (y)}{A^{c}}) = \tilde t(x) \underset {y \in \Omega (x)}{min}(\underset{c}{min} \frac{J^{c} (y)}{A^{c}})+ 1 − \tilde t(x)
y∈Ω(x)min(cminAcIc(y))=t~(x)y∈Ω(x)min(cminAcJc(y))+1−t~(x)
根据暗原色先验理论
J
d
a
r
k
(
x
)
=
m
i
n
y
∈
Ω
(
x
)
(
m
i
n
c
J
c
(
y
)
)
=
0
J^{dark}(x) = \underset {y \in \Omega (x)}{min}(\underset{c }{min} J^{c}(y)) = 0
Jdark(x)=y∈Ω(x)min(cminJc(y))=0
推导出
m
i
n
y
∈
Ω
(
x
)
(
m
i
n
c
J
c
(
y
)
A
c
)
=
0
\underset {y \in \Omega (x)}{min}(\underset{c }{min} \frac{J^{c}(y)}{A^{c}}) = 0
y∈Ω(x)min(cminAcJc(y))=0
带入透射率为常数的公式,得到透射率预估值
t
~
(
x
)
=
1
−
m
i
n
y
∈
Ω
(
x
)
(
m
i
n
c
I
c
(
y
)
A
c
)
\tilde t(x) = 1-\underset {y \in \Omega (x)}{min}(\underset{c }{min} \frac{I^{c}(y)}{A^{c}})
t~(x)=1−y∈Ω(x)min(cminAcIc(y))
上式添加一个限制系数,得到
t
~
(
x
)
\tilde t(x)
t~(x):
t
~
(
x
)
=
1
−
ω
m
i
n
y
∈
Ω
(
x
)
(
m
i
n
c
I
c
(
y
)
A
c
)
\tilde t(x) = 1-\omega\underset {y \in \Omega (x)}{min}(\underset{c }{min} \frac{I^{c}(y)}{A^{c}})
t~(x)=1−ωy∈Ω(x)min(cminAcIc(y))
ω
\omega
ω取值0.95
以上假设全球达气光A值时已知的,在实际中,我们可以借助于暗通道图来从有雾图像中获取该值。具体步骤如下:
1)从暗通道图中按照亮度的大小取前0.1%的像素。
2)在这些位置中,在原始有雾图像I中寻找对应的具有最高亮度的点的值,作为
A
A
A值。
算法参数优化
文中自适应调节
t
(
x
)
t(x)
t(x),如下式
t
′
(
x
)
=
{
2
∗
t
(
x
)
,
0
<
t
(
x
)
<
0.5
1
,
0.5
<
t
(
x
)
<
1
t'(x) = \begin{cases} 2*t(x),0<t(x)<0.5\\1,0.5<t(x)<1 \end{cases}
t′(x)={2∗t(x),0<t(x)<0.51,0.5<t(x)<1
优化
t
(
x
)
t(x)
t(x)如下,增强暗区提亮,亮区微处理,效果更好
t
′
(
x
)
=
{
t
(
x
)
2
∗
2
,
0
<
t
(
x
)
<
0.5
t
(
x
)
,
0.5
<
t
(
x
)
<
1
t'(x) = \begin{cases} t(x)^2*2,0<t(x)<0.5\\t(x),0.5<t(x)<1 \end{cases}
t′(x)={t(x)2∗2,0<t(x)<0.5t(x),0.5<t(x)<1
效果对比



图、测试图像1、原文处理效果、算法优化处理效果



图、测试图像2、原文处理效果、算法优化处理效果



图、测试图像3、原文处理效果、算法优化处理效果 ## 算法总结 简单易实现的增强算法,普世性较好,透雾算法处理部分兼容各种透雾算法。
算法实现参考
https://github.com/AomanHao/ISP_Low_Light_Image_Enhancement
我的个人博客主页,欢迎访问
我的CSDN主页,欢迎访问
我的GitHub主页,欢迎访问
我的个人博客主页,欢迎访问
我的CSDN主页,欢迎访问
我的GitHub主页,欢迎访问
【阅读笔记】低照度图像增强-《Fast efficient algorithm for enhancement of low lighting video》的更多相关文章
- Mysql DOC阅读笔记
Mysql DOC阅读笔记 转自我的Github Speed of SELECT Statements 合理利用索引 隔离调试查询中花费高的部分,例如函数调用是在结果集中的行执行还是全表中的行执行 最 ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- 阅读笔记 1 火球 UML大战需求分析
伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本 <火球 UML大战需求分析>,首先 ...
- [阅读笔记]Software optimization resources
http://www.agner.org/optimize/#manuals 阅读笔记Optimizing software in C++ 7. The efficiency of differe ...
- 《uml大战需求分析》阅读笔记05
<uml大战需求分析>阅读笔记05 这次我主要阅读了这本书的第九十章,通过看这章的知识了解了不少的知识开发某系统的重要前提是:这个系统有谁在用?这些人通过这个系统能做什么事? 一般搞清楚这 ...
- <<UML大战需求分析>>阅读笔记(2)
<<UML大战需求分析>>阅读笔记(2)> 此次读了uml大战需求分析的第三四章,我发现这本书讲的特别的好,由于这学期正在学习设计模式这本书,这本书就讲究对uml图的利用 ...
- uml大战需求分析阅读笔记01
<<UML大战需求分析>>阅读笔记(1) 刚读了uml大战需求分析的第一二章,读了这些内容之后,令我深有感触.以前学习uml这门课的时候,并没有好好学,那时我认为这门课并没有什 ...
- Hadoop阅读笔记(七)——代理模式
关于Hadoop已经小记了六篇,<Hadoop实战>也已经翻完7章.仔细想想,这么好的一个框架,不能只是流于应用层面,跑跑数据排序.单表链接等,想得其精髓,还需深入内部. 按照<Ha ...
- Hadoop阅读笔记(六)——洞悉Hadoop序列化机制Writable
酒,是个好东西,前提要适量.今天参加了公司的年会,主题就是吃.喝.吹,除了那些天生话唠外,大部分人需要加点酒来作催化剂,让一个平时沉默寡言的码农也能成为一个喷子!在大家推杯换盏之际,难免一些画面浮现脑 ...
- Hadoop阅读笔记(五)——重返Hadoop目录结构
常言道:男人是视觉动物.我觉得不完全对,我的理解是范围再扩大点,不管男人女人都是视觉动物.某些场合(比如面试.初次见面等),别人没有那么多的闲暇时间听你诉说过往以塑立一个关于你的完整模型.所以,第一眼 ...
随机推荐
- 在smt贴片加工中手工焊接和机器焊接的区别
在smt贴片加工领域,都需要将电子元件贴装在pcb板表面并进行焊接的,常用的焊接方式分为两种:手动焊接和全自动机器焊接,而常用的焊接机器有回流焊机和波峰焊机,那你知道他们的区别是什么吗?安徽英特丽带你 ...
- 重复delete 对象指针后的 异常调用栈怪异 解析
Release版VC6 MFC程序 程序正常退出时得到一个如下异常调用栈: 0:000> kb # ChildEBP RetAddr Args to Child WARNING: Frame I ...
- js-函数记忆
函数记忆: 指将上次的(计算结果)缓存起来,当下次调用时,如果遇到相同的(参数),就直接返回(缓存中的数据). 实现原理:将参数和对应的结果保存在对象中,再次调用时,判断对象 key 是否存在,存在返 ...
- C# 禁用窗口激活
如果界面点击时,不想让窗口激活,可以按如下操作: 1 public MainWindow() 2 { 3 InitializeComponent(); 4 SourceInitialized += O ...
- 一文梳理z-index和层叠上下文
前言 最近参与某前端项目架构改造,发现项目中滥用z-index,设置的值有几十种并且不统一.在对项目的z-index进行梳理和统一过程中也深入学习了一下z-index,并撰写成文,希望也能帮助到陌生的 ...
- 记一次 .NET 某车零件MES系统 登录异常分析
一:背景 1. 讲故事 这个案例有点特殊,以前dump分析都是和软件工程师打交道,这次和非业内人士交流,隔行如隔山,从指导dump怎么抓到问题解决,需要一个强大的耐心. 前几天有位朋友在微信上找到我, ...
- SPSS计算极值、平均值、中位数、方差、偏度、峰度、变异系数
本文介绍基于SPSS软件的经典统计学分析与偏度.峰度等常用统计学指标的计算方法. 首先需要说明,本文所述数据的经典统计学分析,包括计算数据的极值.平均值.中位数.标准差.方差.变异系数.偏度与 ...
- Unity快速接入bugly, 支持Unity2021
鹅厂提供的bugly官方demo工程打包后台也查不到日志,N年不更新(官方已经说不再维护),为此本人做了部分修改测试,提供一个快速接入工程的demo. Unity2021因为版本原因腾讯官方工程不能使 ...
- ET中热更(ILRuntime)使用过程中,需要做的适配器,比如Linq排序
ET中热更(ILRuntime)使用过程中,需要做的适配器,比如Linq排序 By Flamesky 最近项目中用到个Linq的排序,由于没有注册适配器,导致不能用,其实ILRT作者已经做得很好,报错 ...
- Jenkins - 页面汉化
Jenkins - 页面汉化 前言 对于不懂英文的人来讲,尤其是第一次使用Jenkins环境,看全英文的Jenkins页面是十分困难的: Jenkins对于不懂英文的用户有做汉化的插件包,但是汉化的不 ...