一、治理背景

数据库系统性能问题会对应用程序的性能和用户体验产生负面影响。慢查询可能导致应用程序响应变慢、请求堆积、系统负载增加等问题,甚至引发系统崩溃或不可用的情况。慢SQL治理是在数据库系统中针对执行缓慢的SQL查询进行优化和改进的一项重要工作。

但原有的治理节奏,一般在大促备战期间,集中投入人力紧急治理,日常对慢SQL的关注度不高;即使研发团队想着手治理,实例下的SQL明细筛选繁琐,趋势不明,缺少系统化,数字化的治理方案。

所以为了保证系统稳定性,预防潜在慢SQL导致应急事故,发起慢SQL常态化备战专项,下文主要描述专项的实践及落地情况。

二、阶段规划

1.0阶段

目标:【形成常态化治理机制,关注慢SQL解决的有效率】

改变慢SQL治理习惯,由原大促备战期间治理,落地按照日维度产生的慢SQL每天跟进,关注双周维度治理的有效率。

关注指标:

逾期率 = 工单逾期数量(创建时间在当季度的任务)/总量(创建时间在当季度的任务) 注:超过14天未处理完成的算逾期,逾期与否以第一次完成的时间来判断,如果在截止日期前未完成,算逾期;如果在截止日期前完成,但是重开后,在截止日期后完成,不算逾期,算重开;挂起的如果超过14天会统计到逾期里;

重开率 =工单重开次数(创建时间在当季度的任务,如果是一个任务被重开5次,记录为5)/总量(创建时间在当季度的任务)

2.0阶段

目标:【彻底根治慢SQL历史债,达成阶段性内的>0.9s清零】

经过1.0阶段研发团队有序进行慢SQL的逐步治理,前期已经有效解决部分慢SQL数据,但仍存在历史债,影响系统稳定性。2.0阶段要求双周阶段性清零。

关注指标:

P0工单推送数=大于0.9s推送时间在当周的任务总数 注:声明级别划分,

P0 执行时间大于0.9秒,且达到阈值10次

P1 执行时间大于0.9秒,但未达到阈值10次

P2 执行时间小于0.9秒未加索引,且达到阈值10次

P3 执行时间小于0.9秒未加索引,但未达到阈值10次

P0工单存量数=大于0.9s推送时间在当周的任务中状态是非已解决的总数

解决率=大于0.9s推送时间在当中的任务状态是已解决的/推送时间在当周的任务总数

3.0阶段

目标:【提高系统性能指标,阶梯型降低慢SQL阈值】

存在较大隐患的0.9s阶段性清零后,对慢SQL工单逐步精细化,按照阶梯维度逐步降低慢SQL定义阈值,按照双周维度对新增慢SQL清零。

关注指标:

P0工单推送数=大于0.9s推送时间在当周的任务总数 注:声明级别划分,

P0 执行时间大于0.9秒

P1 执行时间小于等于0.9秒大于0.7秒

P2 执行时间小于等于0.7秒大于0.5秒

P3 执行时间小于等于0.5秒未加索引

P1工单推送数=小于等于0.9s大于0.7s推送时间在当周的任务总数

P2工单推送数=小于等于0.7s大于0.5s推送时间在当周的任务总数

存量数=推送时间在当周的任务中状态是非已解决的总数

解决率=推送时间在当中的任务状态是已解决的/推送时间在当周的任务总数

4.0阶段

目标:【前置预防慢SQL,落地数据库操作规范】

预期目标,彻底解决历史债提升系统性能指标后,贯彻数据库操作规范预防新增慢SQL,后续持续关注新增的慢SQL,控制新增数量目标周清。

关注指标:

工单新增数=推送时间在当周的非现存指纹ID的任务总数

存量数=推送时间在当周的任务中状态是非已解决的总数

解决率=推送时间在当中的任务状态是已解决的/推送时间在当周的任务总数

三、落地方案

①数据准备

阈值定义

结合二级部门业务,每天搜集SQL的查询时间是T-1天,执行时间>0.9秒或<0.9秒但执行计划内未走索引的,剔除bi_cx和wlcx抽数后(不区分主从),聚合相同指纹慢SQL均识别为现存风险慢SQL。

明确等级

不同治理阶段,会针对慢SQL划分优先级,按P0-P3顺序,推动研发由高到低按照不同解决时效进行考核。同时提供辅助诊断信息,包括触发该慢SQL治理任务的数据库IP/域名/库名/执行耗时/执行计划等。

归类筛选

按照实例信息,数据库名,归属系统,归属产品条线,查询时间,聚合指纹等进行归类,方便归类出慢SQL的同一问题源。

②工单推进

工单流转

按照业务条线划分,明确每个条线工单接口人,统一下派慢SQL工单给到接口人,由接口人按照系统分发组内同学,逐一解决。

解决思路

借鉴dba等提供的解决思路,同时总结团队内落地的解决方案,推进慢SQL快速解决。

③趋势分析

图表制作

根据每个阶段关注指标数据,制作慢SQL解决趋势图表,实现团队内可清晰查看,每个实例下的慢SQL明细,支持多个维度筛选;同时按照时间维度支持查看解决趋势了,现存数量等。

通晒复盘

以专项周会的形式,同步研发团队处理节奏和进度,保障持续推进。

④过程跟踪

1.0阶段主要关注解决有效性

2.0阶段关注>0.9s的治理,进行历史债的清理

P0级SQL的解决跟进:

现有历史债的清零:

按月度出现慢SQL量的趋势

四、落地结果

【系统保障】

经过慢SQL的逐步治理,截止529封板前,团队累计解决慢SQL831条,完成今年618备战期间,阶段性内的历史债**清零。**日常完成慢sql治理索引添加和代码优化,大促重点关注疑难和分析未使用索引,做到备战无遗漏。

更是直接保障了系统的稳定性,近半年无因慢SQL导致的线上问题。

【方案沉淀】

随着慢SQL治理作为专项融入到研发的日常工作,首先团队内为避免新的慢SQL产生,落地数据库开发规范,京东集团数据库开发规范-V1.0-公示稿,同时如何分析SQL、快速定位、高效解决,团队内也输出了治理的解决方案。

五、总结

经过专项各个阶段的推进落地,团队内贯彻了治理目标,沉淀了解决方案,后续慢SQL治理会持续化推进,从而保障系统稳定性。

作者:京东物流 刘红妍

来源:京东云开发者社区 自猿其说 Tech 转载请注明来源

慢SQL治理实践及落地成果分享的更多相关文章

  1. 美团张志桐:美团 HTTP 服务治理实践

    2019 年 7 月 6 日,OpenResty 社区联合又拍云,举办 OpenResty × Open Talk 全国巡回沙龙·上海站,美团基础架构部技术专家张志桐在活动上做了<美团 HTTP ...

  2. 公司内部培训SQL Server传统索引结构PPT分享

    公司内部培训SQL Server传统索引结构PPT分享 下载地址 http://files.cnblogs.com/files/lyhabc/SQLServer%E4%BC%A0%E7%BB%9F%E ...

  3. 3-美团 HTTP 服务治理实践

    参考: 美团 HTTP 服务治理实践 Oceanus:美团HTTP流量定制化路由的实践

  4. 公有云上构建云原生 AI 平台的探索与实践 - GOTC 技术论坛分享回顾

    7 月 9 日,GOTC 2021 全球开源技术峰会上海站与 WAIC 世界人工智能大会共同举办,峰会聚焦 AI 与云原生两大以开源驱动的前沿技术领域,邀请国家级研究机构与顶级互联网公司的一线技术专家 ...

  5. Pisa-Proxy 之 SQL 解析实践

    SQL 语句解析是一个重要且复杂的技术,数据库流量相关的 SQL 审计.读写分离.分片等功能都依赖于 SQL 解析,而 Pisa-Proxy 作为 Database Mesh 理念的一个实践,对数据库 ...

  6. 揭开SQL注入的神秘面纱PPT分享

        SQL注入是一个老生常谈但又经常会出现的问题.该课程是我在公司内部培训的课程,现在分享出来,希望对大家有帮助.     点击这里下载.

  7. SQL Server In-Memory OLTP 无损PPT分享

    我在今年DTCC上SQL Server内存数据库分享 PPT.感兴趣的朋友可以看下,无闩锁的数据结构使得热区问题成为过去,并行很好的维护了CPU Cache的命中率,Native代码执行使得CPU流水 ...

  8. 编写高效SQL最佳实践

    编写高效 SQL 语句的最佳实践 秦玮, 高级软件工程师, IBM 王广成, 软件工程师, IBM 王韵婷, 高级软件工程师, IBM 简介: 本文列举了一些在编写 SQL 查询语句时可能导致 DB2 ...

  9. 我的Spark SQL单元测试实践

    最近加入一个Spark项目,作为临时的开发人员协助进行开发工作.该项目中不存在测试的概念,开发人员按需求进行编码工作后,直接向生产系统部署,再由需求的提出者在生产系统检验程序运行结果的正确性.在这种原 ...

  10. SQL Server 各版本安装包分享

    已将SQL Server 2005以上各版本的安装包分享到百度云盘,有需要的朋友可以下载进行安装,相关安装教程可以百度搜索.安装遇到难以解决的问题可以留言给我,2016版以上在选择功能的时候建议初学者 ...

随机推荐

  1. 手把手实践丨基于STM32+华为云设计的智慧烟感系统

    摘要:当前基于STM32和华为云,设计了一种智慧烟感系统,该系统可以检测烟雾,同时将检测到的数据上传到云端进行处理和分析. 本文分享自华为云社区<基于STM32+华为云设计的智慧烟感系统> ...

  2. 从兆碱基到 Kb、KB、Bps、bps 之间的区别

    由于微信不允许外部链接,你需要点击文章尾部左下角的 "阅读原文",才能访问文中链接. 生物信息很多文章都提到:DNA 序列的 100 万个碱基数据(兆碱基)大致相当于计算机 1 兆 ...

  3. 实例讲解Flink 流处理程序编程模型

    摘要:在深入了解 Flink 实时数据处理程序的开发之前,先通过一个简单示例来了解使用 Flink 的 DataStream API 构建有状态流应用程序的过程. 本文分享自华为云社区<Flin ...

  4. 【技术积累】Python中的Pandas库【三】

    什么是Series Series是一种带有标签的一维数组,可以容纳各种类型的数据(例如整数,浮点数和字符串).每个Series对象都有一个索引,它可以用来引用每个元素.Series对象的主要特征是可以 ...

  5. docker-compose多服务器部署ELK

    多服务器构建ELK es使用1主2从,logstash转发,kibana展现,本文ELK版本使用7.16.1 如果单机测试,请查看docker-compose单服务器部署ELK es-master:1 ...

  6. 浅谈OpenCV的多对象匹配图像的实现,以及如何匹配透明控件,不规则图像

    浅谈OpenCV的多对象匹配透明图像的实现,以及如何匹配半透明控件 引子 OpenCV提供的templateMatch只负责将(相关性等)计算出来,并不会直接提供目标的对应坐标,一般来说我们直接遍历最 ...

  7. 创建 Code Interpreter Demo: 一次实践的探索

    好消息,好消息,Code Interpreter可以测试使用了!!! 在这篇文章中,我们将探索如何创建一个 Code Interpreter Demo.提交一个2023年1-5月份的融资记录数据,让它 ...

  8. 瞬间抠图!揭秘 ZEGO 绿幕抠图算法背后的技术

    抠图是图像处理中最常见的操作之一,指的是将图像中需要的部分从画面中精确的提取出来. 抠图的主要功能是为了后期的合成做准备.在 Photoshop 中,抠图的方法有很多种,最常见的有通道抠图.蒙版抠图. ...

  9. Angular: Error: NG0100: ExpressionChangedAfterItHasBeenChecked

    错误原因 当变更检测完成后又更改了表达式的值时,Angular就会抛出ExpressionChangedAfterItHasBeenCheckedError 错误,Angular只会在开发模式下抛出此 ...

  10. 记一次 .NET 某物流API系统 CPU爆高分析

    一:背景 1. 讲故事 前段时间有位朋友找到我,说他程序CPU直接被打满了,让我帮忙看下怎么回事,截图如下: 看了下是两个相同的程序,既然被打满了那就抓一个 dump 看看到底咋回事. 二:为什么会打 ...