Redis24篇集合

1 介绍

布隆过滤器(Bloom Filter)是 Redis 4.0 版本之后提供的新功能,我们一般将它当做插件加载到 Redis Service服务器中,给 Redis 提供强大的滤重功能。

它是一种概率性数据结构,可用于判断一个元素是否存在于一个集合中。相比较之 Set 集合的去重功能,布隆过滤器空间上能节省 90% +,不足之处是去重率大约在 99% 左右,那就是有 1% 左右的误判率,这种误差是由布隆过滤器的自身结构决定的。它有如下优缺点:

  • 优点:空间效率和查询时间都比一般的算法要好的多
  • 缺点:有一定的误识别率和删除困难

详细的原理可以参考笔者的这一篇《聊聊布隆过滤器(原理篇)》。

2 应用场景说明

我们在遇到数据量大的时候,为了去重并避免大批量的重复计算,可以考虑使用 Bloom Filter 进行过滤。

具体常用的经典场景如下:

  • 解决大流量下缓存穿透的问题,参考笔者这篇《一次缓存雪崩的灾难复盘》。
  • 过滤被屏蔽、拉黑、减少推荐的信息,一般你在浏览抖音或者百度App的时候,看到不喜欢的会设置减少推荐、屏蔽此类信息等,都可以采用这种原理设计。
  • 各种名单过滤,使用布隆过滤器实现第一层的白名单或者黑名单过滤,可用于各种AB场景。

下面以缓存穿透为解决目标进行案例介绍。

3 案例分析

布隆过滤器的一个经典应用场景就是解决缓存穿透问题!

缓存穿透是指访问一个不存在的key,缓存不起作用,请求会穿透到DB,流量井喷时会导致DB挂掉。

比如 我们查询用户的信息,程序会根据用户的编号去缓存中检索,如果找不到,再到数据库中搜索。如果你给了一个不存在的编号:XXXXXXXX,那么每次都比对不到,就透过缓存进入数据库。

这样风险很大,如果因为某些原因导致大量不存在的编号被查询,甚至被恶意伪造编号进行大规模攻击,那将是灾难。

解决方案质疑就是在缓存之前在加一层 BloomFilter :

  • 把存在的key记录在BloomFilter中,在查询的时候先去 BloomFilter 去查询 key 是否存在,如果不存在则说明数据库和缓存都没有,就直接返回,
  • 存在再走查缓存 ,投入数据库去查询,这样减轻了数据库的压力。

3.1 巨量查询场景

下面以火车票订购和查询为案例进行说明,如果火车票被恶意攻击,模拟了一样结构的火车票订单编号,那很可能通过大量的请求穿透过缓存层把数据库打雪崩了,所以使用布隆过滤器为服务提供一层保障。

具体的做法就是,我们在购买火车票成功的时候,把订单号的ID写入(异步或者消息队列的方式)到布隆过滤器中,保障后续的查询都在布隆过滤器中走一遍再进到缓存中去查询。

3.2 创建Bloom Filter

创建 Bloom Filter 的语法如下:

# BF.RESERVE {key} {error_rate} {capacity} [EXPANSION {expansion}] [NONSCALING]
BF.RESERVE ticket_orders 0.01 1000000

这边的命令是通过BF.RESERVE命令手动创建一个名字为 ticket_orders,错误率为 0.01 ,初始容量为 1000000 的布隆过滤器。

这边需要注意的一些点是:

  • error_rate 越小,对碰撞的容忍度越小,需要的存储空间就越大。如果允许一定比例的不准确,对精确度要求不高的场景,error_rate 可以设的稍大一点。
  • capacity 设置的过大,会浪费存储空间,设置过小,准确度不高。所以评估的时候需要精准一点,既要避免浪费空间也要保证准确比例。

原理不理解的请参考笔者的这一篇《聊聊布隆过滤器(原理篇)》。

3.3 创建车票订单

# BF.ADD {key}  {value ... }

# 添加单个订单号
BF.ADD ticket_orders 1725681193-350000
(integer) 1 # 添加多个订单号
BF.MADD ticket_orders 1725681193-350000 1725681197-270001 1725681350-510007
1) (integer) 1
2) (integer) 1
3) (integer) 1

以上的语句是将已经订好的车票订单号存储到Bloom Filter中,包括一次存储单个和一次存储多个。

火车票订单同步到 Bloom Filter 的步骤如下:

3.4 判断火车票订单Id是否存在

# BF.EXISTS {key} {value} ,存在的话返回 1,不存在返回 0
BF.EXISTS ticket_orders 1725681193-350000
(integer) 1 # 批量判断多个值是否存在于布隆过滤器,语句如下:
BF.MEXISTS ticket_orders 1725681193-350000 1725681197-270001 1725681350-510007
1) (integer) 0
2) (integer) 1
3) (integer) 0

BF.EXISTS 判断一个元素是否存在于 Bloom Filter中,返回值 = 1 表示存在,返回值 = 0 表示不存在。可以一次性判断单个元素,或者一次性判断多个元素。

综上,我们通过几个指令就能实现布隆过滤器的建设,避免缓存穿透的情况发生。

如果你要查询缓存信息,必须先到Bloom Filter中先跑一次,不存在的直接过滤掉,这样就不会因为无效的key把缓存打穿。

4 程序实现说明

可以在 Golang 中使用 go-redis/redis 库来封装布隆过滤器功能。

你需要先确保你的 Redis 服务器已经安装了 RedisBloom 模块,因为 Redis 本身并不直接支持布隆过滤器。一旦 RedisBloom 安装并配置好,你就可以在 Go 代码中通过 go-redis/redis 库来调用相关的 RedisBloom 命令。

package bloomfilter  

import (
"context"
"fmt"
"github.com/go-redis/redis/v8"
) // BloomFilter 封装了与布隆过滤器相关的操作
type BloomFilter struct {
rdb *redis.Client
name string
} // NewBloomFilter 创建一个新的布隆过滤器实例
func NewBloomFilter(rdb *redis.Client, name string) *BloomFilter {
return &BloomFilter{
rdb: rdb,
name: name,
}
} // Add 将元素添加到布隆过滤器中
func (bf *BloomFilter) Add(ctx context.Context, item string, capacity int64, errorRate float64) error {
// 注意:RedisBloom 的 BF.ADD 命令通常不需要显式设置容量和错误率,
// 因为这些是在创建布隆过滤器时设置的。这里我们简化为只添加元素。
// 如果需要动态调整这些参数,你可能需要重新创建布隆过滤器。
// 但为了示例,我们假设这些参数在创建布隆过滤器时已经设置好了。
_, err := bf.rdb.Do(ctx, "BF.ADD", bf.name, item).Result()
return err
} // Exists 检查元素是否可能存在于布隆过滤器中
func (bf *BloomFilter) Exists(ctx context.Context, item string) (bool, error) {
result, err := bf.rdb.Do(ctx, "BF.EXISTS", bf.name, item).Int()
if err != nil {
return false, err
}
// BF.EXISTS 返回 1 表示可能存在,0 表示一定不存在
return result == 1, nil
} // 注意:在实际应用中,你可能还需要封装更多操作,比如删除布隆过滤器(虽然布隆过滤器通常不支持删除单个元素)
// 或者调整布隆过滤器的容量和错误率(这通常意味着需要重新创建布隆过滤器)。 func main() {
rdb := redis.NewClient(&redis.Options{
Addr: "localhost:6379", // Redis 地址
Password: "", // 密码(如果有的话)
DB: 0, // 使用的数据库
}) bf := NewBloomFilter(rdb, "myBloomFilter") ctx := context.Background() // 添加元素
err := bf.Add(ctx, "item1", 100000, 0.01) // 注意:BF.ADD 命令通常不需要 capacity 和 errorRate
if err != nil {
panic(err)
} // 检查元素是否存在
exists, err := bf.Exists(ctx, "item1")
if err != nil {
panic(err)
}
fmt.Println("Exists:", exists) exists, err = bf.Exists(ctx, "item2")
if err != nil {
panic(err)
}
fmt.Println("Exists:", exists)
} // 注意:上面的 Add 方法中的 capacity 和 errorRate 参数在 BF.ADD 命令中并不直接使用,
// 因为 RedisBloom 的 BF.ADD 命令主要用于添加元素到已存在的布隆过滤器中。
// 容量和错误率通常在创建布隆过滤器时通过 BF.RESERVE 命令设置。

重要提示

  • 在上面的代码中,Add 方法的 capacityerrorRate 参数并未直接用于 BF.ADD 命令,因为 BF.ADD 只是用于向已存在的布隆过滤器中添加元素。如果你需要设置布隆过滤器的容量和错误率,你应该在创建布隆过滤器时使用 BF.RESERVE 命令。
  • 布隆过滤器不支持传统意义上的“删除”操作,因为一旦一个位被设置为 1,它就不能再被设置为 0(除非重新创建布隆过滤器)。
  • 在实际部署之前,请确保你的 Redis 服务器已经安装了 RedisBloom 模块,并且 go-redis/redis 库与你的 Redis 服务器版本兼容。

5 总结

本篇介绍了布隆过滤器的几种实现场景。

并以火车票订单信息查询为案例进行说明,如何使用布隆过滤器避免缓存穿透,避免被恶意攻击。

Redis系列补充:聊聊布隆过滤器(go语言实践篇)的更多相关文章

  1. 浅谈redis的HyperLogLog与布隆过滤器

    首先,HyperLogLog与布隆过滤器都是针对大数据统计存储应用场景下的知名算法. HyperLogLog是在大数据的情况下关于数据基数的空间复杂度优化实现,布隆过滤器是在大数据情况下关于检索一个元 ...

  2. Redis解读(4):Redis中HyperLongLog、布隆过滤器、限流、Geo、及Scan等进阶应用

    Redis中的HyperLogLog 一般我们评估一个网站的访问量,有几个主要的参数: pv,Page View,网页的浏览量 uv,User View,访问的用户 一般来说,pv 或者 uv 的统计 ...

  3. 09 redis中布隆过滤器的使用

    我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容.问题来了,新闻客户端推荐系统如何实现推送去重的? 会想到服务器记录了用户看过的所有历史记录,当推 ...

  4. 详细解析Redis中的布隆过滤器及其应用

    欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告 ...

  5. Redis详解(十三)------ Redis布隆过滤器

    本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器. 1.布隆过滤器使用场景 比如有如下几个需求: ①.原本有10亿个号码,现在又来了 ...

  6. Redis中的布隆过滤器及其应用

    什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西 ...

  7. 细谈布隆过滤器及Redis实现

    ​ 何为布隆过滤器? 本质上是一种数据结构,是1970年由布隆提出的.它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数).可以用于检索一个元素是否在一个集合中. 数据结构: 布隆过 ...

  8. 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

    第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...

  9. 布隆过滤器(Bloom Filter)简要介绍

    一种节省空间的概率数据结构 布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判.但是布隆过滤器也不是特别不精确,只要参数设置的 ...

  10. 三十七 Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

    Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...

随机推荐

  1. 解决react native打包apk文件安装好之后进入应用闪退的问题

    这个是我一个前端前辈帮我弄的,自己解决的时候不行,她去官网找了相关的问题,然后发给我的. react-native android 的release安装包运行闪退,但是debug运行正常 环境:0.6 ...

  2. 优化 GitHub 体验的浏览器插件「GitHub 热点速览」

    上周,GitHub 有个"安全问题"--CFOR(Cross Fork Object Reference)冲上了热搜,该问题的表现是: 远程仓库的提交内容任何人可以访问,即使已被删 ...

  3. Jmeter函数助手13-threadGroupName

    threadGroupName函数获取当前线程组的名称.该函数没有参数,直接引用即可. 1. 返回当前线程组的名称

  4. C#/.NET/.NET Core优秀项目和框架2024年7月简报

    前言 公众号每月定期推广和分享的C#/.NET/.NET Core优秀项目和框架(每周至少会推荐两个优秀的项目和框架当然节假日除外),公众号推文中有项目和框架的介绍.功能特点.使用方式以及部分功能截图 ...

  5. 【Front-End】获取视频资源

    需求场景: 我妈发个消息,在某某是网站上发现一个很好的视频,对我妈来说是一个有用的视频资源 但是视频网站不提供下载功能,叫我来帮她获取这个资源 一般来说可以利用一些东西来实现这个需求 这个是视频地址: ...

  6. pyqt报错、python报错:src/pyaudio/device_api.c:9:10: fatal error: portaudio.h: 没有那个文件或目录

    报错信息: -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/devil/anaconda3/envs/91/include -fPIC -O2 ...

  7. RTX显卡 运行TensorFlow=1.14.0 代码 报错 Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR

    硬件环境: RTX2070super 显卡 软件环境: Ubuntu18.04.5 Tensorflow = 1.14.0 -------------------------------------- ...

  8. 【转载】 arXiv论文提交流程

    原文地址: https://blog.csdn.net/u010705932/article/details/105834469 =================================== ...

  9. 国产CPU——兆芯(先开)KX-6640MA 使用感受

    上半年买了个兆芯CPU的小mini电脑,一直没有换Windows系统,这两天想着就换了过来,具体配置如下: 1.  使用Python死循环代码烧机,性能和我14年买的i5-4200M的Intel CP ...

  10. 英雄钢笔359色 EF尖 与 凌美(LAMY) 狩猎者 磨砂黑EF尖——长期使用对比

    首先说明一下,这两个钢笔我都是长期使用了,凌美用了两三年了,英雄的那个用了也快半年了. 两款钢笔细节: 英雄:https://item.jd.com/1002650.html 凌美钢笔:https:/ ...