sql2rel的过程是将SqlNode 转化成RelNode的过程

SqlToRelConverterTest中添加样例测试

  @Test void testScan() {
String sql = "SELECT * FROM EMP WHERE empno < 10";
sql(sql).ok();
}

会生成如下的relnode tree.

LogicalProject(EMPNO=[$0], ENAME=[$1], JOB=[$2], MGR=[$3], HIREDATE=[$4], SAL=[$5], COMM=[$6], DEPTNO=[$7], SLACKER=[$8])
LogicalFilter(condition=[<($0, 10)])
LogicalTableScan(table=[[CATALOG, SALES, EMP]])

Validator

registerQuery

主要实现类是在SqlValidatorImpl

org.apache.calcite.sql.validate.SqlValidatorImpl#registerQuery()



主要做的事就是遍历这个query将各个部分的SqlNode对应的SqlValidatorScope以及SqlValidatorNamespace保存起来,供后续validate和sql2rel阶段使用。

这两个概念看起来有点重复,看注解的意思应该是scope主要负责name-resolution,将一个name 解析成相应的namespace来

* Name-resolution scope. Represents any position in a parse tree than an
* expression can be, or anything in the parse tree which has columns.
*
* <p>When validating an expression, say "foo"."bar", you first use the
* {@link #resolve} method of the scope where the expression is defined to
* locate "foo". If successful, this returns a
* {@link SqlValidatorNamespace namespace} describing the type of the resulting
* object.

而namespace描述了SqlNode所对应的relation,如返回类型

 * A namespace describes the relation returned by a section of a SQL query.

在convertQuery完成后就注册了整个Query的各个SqlNode的映射关系

validate

注册完成后会执行validate阶段,这部分会涉及语义,类型等校验,比如校验select的where条件

  1. condition中没有aggregate或window aggregate
  2. condition Node 自身的校验逻辑(最终还是会路由到SqlValidator的实现上)
  3. 校验返回类型是boolean的



校验完成之后就会调用下面的接口开始进行toRel的转化

SqlToRel

转化的入口

org.apache.calcite.sql2rel.SqlToRelConverter#convertQuery

这里面最重要的就是通过 convertQueryRecursive递归的进行转化

convertSelect

SELECT `EMP`.`EMPNO`, `EMP`.`ENAME`, `EMP`.`JOB`, `EMP`.`MGR`, `EMP`.`HIREDATE`, `EMP`.`SAL`, `EMP`.`COMM`, `EMP`.`DEPTNO`, `EMP`.`SLACKER`
FROM `CATALOG`.`SALES`.`EMP` AS `EMP`
WHERE `EMP`.`EMPNO` < 10

我们这个query的主体是一个SqlSelect所以会通过convertSelect来转化

public RelNode convertSelect(SqlSelect select, boolean top) {
final SqlValidatorScope selectScope = validator().getWhereScope(select);
final Blackboard bb = createBlackboard(selectScope, null, top);
convertSelectImpl(bb, select);
return castNonNull(bb.root);
}

封装了两个对象 SqlValidatorScope 和 Blackboard。最后我们转化完成的RelNode的root会保存在blackboard中,也就是bb.root.

convertFrom

`CATALOG`.`SALES`.`EMP` AS `EMP`

convertSelect的第一步就是先转化From子句, from 子句有很多种可能, 例如以下这些

a single table ("SALES.EMP"),
an aliased table ("EMP AS E"),
a list of tables ("EMP, DEPT"),
an ANSI Join expression ("EMP JOIN DEPT ON EMP.DEPTNO = DEPT.DEPTNO"),
a VALUES clause ("VALUES ('Fred', 20)"),
a query ("(SELECT * FROM EMP WHERE GENDER = 'F')"),
or any combination of the above.

这个例子里是一个 CATALOG.SALES.EMP的 SqlIdentifer 然后就会根据这个identifier通过CatalogReader查找这个identifier所表示的table。然后会基于此创建出LogicalTableScan并将该RelNode设置到 BlackBoard中.

convertWhere

`EMP`.`EMPNO` < 10

通过Blackboard#convertExpression将上述的SqlBasicCall转化成RexCall (where条件中的是一个rex表达式)

然后会基于Blackboard的当前的root作为input创建一个LogicalFilter节点

final RelNode filter =
filterFactory.createFilter(bb.root(), convertedWhere2, ImmutableSet.of());
final RelNode r;
final CorrelationUse p = getCorrelationUse(bb, filter);
if (p != null) {
assert p.r instanceof Filter;
Filter f = (Filter) p.r;
r =
LogicalFilter.create(f.getInput(), f.getCondition(),
ImmutableSet.of(p.id));
} else {
r = filter;
} bb.setRoot(r, false);

这里会先基于前面创建的RexCall创建出filter节点,但是还会看一下这个filter中是否有 correlation variables. 如果有的话需要将这个CorrelationId 添加到Filter中, 这个样例中并没有使用。

到这里RelNode tree 已经是

LogicalFilter(condition=[<($0, 10)])
LogicalTableScan(table=[[CATALOG, SALES, EMP]])

Correlation

@Test void testCorrelationInWithSubQuery() {
String sql = "select deptno\n"
+ "from emp\n"
+ "where deptno in (select deptno\n"
+ " from dept\n"
+ " where emp.deptno = dept.deptno\n"
+ " and emp.deptno = dept.deptno)";
sql(sql).withExpand(false).withDecorrelate(false).ok();
}

上面提到在convertWhere产生Filter的时候需要处理是否有Correlation variable的场景,而这段sql就会产生这种case。correlation其实就是关联的意思,而这里where in 子句中引用了外层的emp表,所以是一个关联子查询

在WHERE的 in 的子查询中 from 只有 dept表,但是 条件引用了外层查询的emp表,所以会产生一个关联的语义。而后续可以查到Filter条件中引用了Correlation Variable的。



创建关联关系的阶段在解析SqlIdentifier时,当此identifier所对应的inputs不为空,并且identifier对应的scope不是parent scope的话namespace就意味着是对某个表的引用,而其他情况就意味着这个表可能还没有toRel,表明是from了一个correlated的item

所以创建了一个 DefferredLookup

LogicalProject(DEPTNO=[$7])
LogicalFilter(condition=[IN($7, {
LogicalProject(DEPTNO=[$0])
LogicalFilter(condition=[AND(=($cor0.DEPTNO, $0), =($cor0.DEPTNO, $0))])
LogicalTableScan(table=[[CATALOG, SALES, DEPT]])
})], variablesSet=[[$cor0]])
LogicalTableScan(table=[[CATALOG, SALES, EMP]])

convertSelectList

中间还有convert Orderby,convert Aggregate的操作,不过这个样例中没有,最后就是转化selectList,selectList会被转成Project

LogicalProject(EMPNO=[$0], ENAME=[$1], JOB=[$2], MGR=[$3], HIREDATE=[$4], SAL=[$5], COMM=[$6], DEPTNO=[$7], SLACKER=[$8])
LogicalFilter(condition=[<($0, 10)])
LogicalTableScan(table=[[CATALOG, SALES, EMP]])

这样通过不断递归convert,完成了SqlNode到RelNode的转化,中间会借助RelBuilder来创建各个RelNode 并通过BlackBoard维护当前的root节点,用于构建整个tree的结构

Calcite sql2rel 过程的更多相关文章

  1. Flink Sql 之 Calcite Volcano优化器(源码解析)

    Calcite作为大数据领域最常用的SQL解析引擎,支持Flink , hive,  kylin , druid等大型项目的sql解析 同时想要深入研究Flink sql源码的话calcite也是必备 ...

  2. [源码分析] 带你梳理 Flink SQL / Table API内部执行流程

    [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 目录 [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 0x00 摘要 0x01 Apac ...

  3. 从"UDF不应有状态" 切入来剖析Flink SQL代码生成

    从"UDF不应有状态" 切入来剖析Flink SQL代码生成 目录 从"UDF不应有状态" 切入来剖析Flink SQL代码生成 0x00 摘要 0x01 概述 ...

  4. [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码生成 (修订版)

    [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码生成 (修订版) 目录 [源码分析]从"UDF不应有状态" 切入来剖析Flink SQL代码 ...

  5. c++ primer plus 第6版 部分二 5- 8章

    ---恢复内容开始--- c++ primer plus 第6版 部分二    5-  章 第五章 计算机除了存储外 还可以对数据进行分析.合并.重组.抽取.修改.推断.合成.以及其他操作 1.for ...

  6. calcite介绍

    前言 calcite是一个可以将任意数据查询转换成基于sql查询的引擎,引擎特性也有很多,比如支持sql树的解析,udf的扩展,sql执行优化器的扩展等等.目前已经被很多顶级apache项目引用,比如 ...

  7. Flink table&Sql中使用Calcite

    Apache Calcite是什么东东 Apache Calcite面向Hadoop新的sql引擎,它提供了标准的SQL语言.多种查询优化和连接各种数据源的能力.除此之外,Calcite还提供了OLA ...

  8. Calcite分析 - Rule

    Calcite源码分析,参考: http://matt33.com/2019/03/07/apache-calcite-process-flow/ https://matt33.com/2019/03 ...

  9. 春蔚专访--MaxCompute 与 Calcite 的技术和故事

    摘要:2019大数据技术公开课第一季<技术人生专访>,来自阿里云计算平台事业部高级开发工程师雷春蔚向大家讲述了MaxCompute 与 Calcite 的技术和故事. 具体内容包括: 1) ...

  10. 深入浅出Calcite与SQL CBO(Cost-Based Optimizer)优化

    目录 Calcite简介与CBO介绍 Calcite背景与介绍 SQL优化与CBO Calcite优化器 HepPlanner优化器与VolcanoPlanner优化器 Calcite优化样例代码介绍 ...

随机推荐

  1. #线性dp#洛谷 5999 [CEOI2016]kangaroo

    题目 问有多少个长度为 \(n\) 的排列满足首项为 \(st\),末项为 \(ed\), 并且 \(\forall i\in (1,n),\left[a_{i-1}<a_i \oplus a_ ...

  2. 知识汇总:查看linux服务器系统命令

    要查看Linux服务器的系统信息,你可以使用多种命令来获取不同类型的信息.以下是一些常 用的命令和它们的用途: uname - 显示基本的系统信息 uname -a:显示所有的系统信息,包括内核名称. ...

  3. MySql-BlackHole:黑洞引擎

    通过查看SHOW ENGINES;或SHOW VARIABLES LIKE 'have%';的输出来查看但前的mysql版本是否支持这个引擎. 1 mysql> show engines; 2 ...

  4. openGauss 列存表PSort索引

    openGauss 列存表 PSort 索引 概述 PSort(Partial sort) Index 是在列存表的列上建的聚簇索引.CUDesc 上有每个 CU 的 min 和 max 值,但如果业 ...

  5. [MAUI]集成富文本编辑器Editor.js至.NET MAUI Blazor项目

    @ 目录 获取资源 从源码构建 从CDN获取 获取扩展插件 创建项目 创建控件 创建Blazor组件 初始化 保存 销毁 编写渲染逻辑 实现只读/编辑功能 切换模式 获取只读模式状态 响应切换事件 实 ...

  6. 【译】宣布在 Visual Studio 17.10 预览2中为 ARM64 架构提供 SSDT

    我们很高兴地宣布在 ARM64 中为 Visual Studio 推出 SQL Server Data Tools(SSDT).这个增强是在令人兴奋的17.10预览版2中发布的.arm64 上 Vis ...

  7. 重新点亮linux 命令树————网络管理[十一二]

    前言 简单整理一下网络管理. 正文 网络管理需要掌握: 网络状态查看 网络配置 路由命令 网络故障排除 网络服务管理 常用网络配置文件 网络状态的查看: 1.net-tools ---->1.i ...

  8. js 检查对象是否没有字段

    前言 我以前遇到的一个问题. var object={}; if(object=={}) { } 在这里我遇到了问题,一直是lese状态. 后来想想其实也是自己犯了一个很严重的问题,这两个不是同一个对 ...

  9. 使用mmdetection训练自己的coco数据集(免费分享自制数据集文件)

    首先需要准备好数据集,这里有labelme标签数据转coco数据集标签的说明:labelme转coco数据集 - 一届书生 - 博客园 (cnblogs.com) 1. 准备工作目录 我们的工作目录, ...

  10. next.js app目录 i18n国际化简单实现

    最近在用next写一个多语言的项目,找了好久没找到简单实现的教程,实践起来感觉都比较复杂,最后终于是在官方文档找到了,结合网上找到的代码demo,终于实现了,在这里简单总结一下. 此教程适用于比较简单 ...