4G EPS 中的小区搜索
目录
文章目录
前文列表
《4G EPS 中的信道类型》
《4G EPS 中的消息类型》
小区搜索(Cell Search)流程
UE 开机后的第一件事情就是完成小区搜索,即完成和 eNB 的牵手。这是 UE 进行 PLMN 选择、小区选择以及随机接入之前必须要完成的工作。
UE 通过完成小区搜索来实现时、频同步,获得 PCI(Physical Cell Identity,物理小区标识),然后从 PBCH(物理广播信道)读取 SIB 系统信息,UE 继而获知系统帧号和带宽信息,以及 PHICH(物理 HARO 指示信道)的配置等系统消息。具体步骤如下:

UE 首先在可能存在的小区的频率范围内测量小区信号强度 RSSI (Received Signal Strength Indicator,接收信号强度指示),据此找到一个可能存在小区的中心频点;
然后在这个中心频点周围接受收 PSS(主同步信号)和 SSS(辅同步信号),这两个信号的系统带宽没有限制,配置是固定的,而且信号本身以 5ms 为周期重复发射,并且是 ZC 序列,具有很强的相关性,因此可以直接检测并接收到,据此可以得到 PCI,同时得到小区定时的 5ms 边界;
5ms 边界得到后,根据 PBCH(物理广播信道)的时频位置,使用滑窗方法盲检测,一旦发现 CRC 校验结果正确,则说明当前滑动窗就是 10ms 的帧边界,并且可以根据 PBCH(物理广播信道)的内容得到系统帧号和带宽信息,以及 PHICH(物理 HARO 指示信道)的配置;
至此,UE 实现了和 eNB 的定时同步。

需要注意的是,当获取了 PBCH(物理广播信道)信息后,要获得更多的无线信道参数等还要接受其余的 SIB(System Information Blocks,多个系统消息块)系统信息,这些信息在 PDSCH(物理下行共享信道)上发送:
- 接收 PCFICH(物理控制格式指示信道),此时该信道的时频资源就是固定已知的了,可以接收并解析得到 PDCCH(物理下行控制信道)的 Symbol 数目;
- 根据 PBCH(物理广播信道)中指示的配置信息接收 PHICH(物理 HARO 指示信道);
- 在控制区域内,在除去 PCFICH(物理控制格式指示信道)和 PHICH(物理 HARO 指示信道)的其他 CCE 上搜索 PDCCH(物理下行控制信道)并做译码;
- 检测 PDCCH(物理下行控制信道)的 CRC 中的 RNTI(RNTI Radio Network Tempory Identity,无线网络临时标识),如果为 SI-RNTI(系统消息,用于标识 SIB 的传输),则说明后面的 PDSCH(物理下行共享信道)是一个 SIB,于是接收 PDSCH(物理下行共享信道),译码后将 SIB 上报给高层协议栈;
- 不断接收 SIB,HLS 会判断接收的系统消息是否足够,如果足够则停止接收 SIB。
至此,UE 完成了这个小区搜索的流程。
PSS(主同步信号)与 SSS(辅同步信号)
同步信号分两种,PSS(主同步信号)和 SSS(辅同步信号)。信号必须依附于信道传播,所以同步信号是在同步信道这种物理信道上进行传播的。下图给出了主、次同步信道在无线帧上所处的位置。

PSS 映射在频域上位于频率中心的 1.08MHz 的带宽上,包含 6 个RB,72 个子载波。实际上,PSS 只使用了频率中心周围的 62 个子载波,两边各留 5 个子载波用做保护波段。同样 SSS 也是在同样的频域位置。SSS 位于子帧 0 和子帧 5 的最后一个 Symbol,和 PSS 不同的是,位于这两处的 SSS 的序列是不一样的,显然,这样就能检测出 10ms 无线帧的位置。而 SSS 来源于 168 个的组集合,在 36.211 中,表 6.11.2.1-1 给出了映射关系。UE 仅仅检测 1.08MHz 的频带上是否存在主同步信号。
从物理形态上来说,PSS 是典型的 ZC 序列,而 SSS 是两个长度为 31 的 M 序列交叉级联得到的长度为 62 的序列。检测 PSS 的基本原理是使用本地序列和接收信号进行同步相关,进而获得期望的峰值,根据峰值判断出同步信号位置。而 SSS 检测也是同样的原理,这些都是基本的通信原理。关于序列和序列同步,这边不再详细介绍,涉及到多数数学公式,不做这方面开发的,也没必要深究,只要懂得过程就可以。所以下面大致讲讲 PSS 以及 SSS 所起的作用。
当 UE 开机进行全频段搜索的时候,并不知道自己于广阔的无线世界之中处在怎样的位置。所以,此时的 UE 最优先的事情就是必须要找到自己的队列,并且最终于 eNB 完成同步。
- PSS 时,UE 获取到小区(Cell)的组内 ID 以及 5ms 的半帧位置;
- HSS 时,UE 获取小区的组号。
可见,小区搜索过程中通过检索 PSS 和 SSS 二者相结合来确定具体的小区 ID。这就是 PSS 和 SSS 的工作了。这样,UE 就得到了小区的 PCI(Physical Cell Identifier,物理小区标识,LTE 中终端以此区分不同小区的无线信号,小区总共有 3x168=504 个),同时也知道了无线帧的位置。至此,UE 侧就完成了于 eNB 的时隙同步,知道如何跟随 eNB 每 10ms 一个的无线帧。
对于 UE 来说,如果它同时支持 FDD/TDD,那就在可能的 FDD/TDD 制式中,可能出现的 SSS 位置都要去搜索,当然,如果只支持 TDD 的,就只在 TDD 出现的位置上搜索。这样,网络是 FDD 还是 TDD 就能确定。其次,CP 位置也能确定,因为普通 CP 和扩展 CP,对于 SSS 出现的位置是不一样的。
需要注意的是,PSS 和 SSS 这两个步骤还只是粗同步。因为 UE 仍未知道整个小区的细节,这就需要后面逐步读取小区的广播信息(MIB、SIBs)来获取更精确的内容了,做到最终的同步。
DL-RS(下行参考信号)
UE 接收 DL-RS(下行参考信号)来进行精确的时频同步。
因为 CRS(Cell-specific Reference Signal,小区特定参考信号,小区专用信号)是和 PCI 对应的,所以 UE 可以通过在 DL-RS 内查小区的 PCI 来确定 CRS 的位置。对于频率偏差、时间提前量、链路衰落情况,UE 都从这里了解的,然后在时间和频率上紧跟 eNB 的步伐,完成时隙和频率(时频资源的位置)的精确同步。同时,UE 还可以为解调 PBCH 做信道估计(就是从接收数据中将假定的某个信道模型的模型参数估计出来的过程)。

- 时域位置:通过上述公式可知,时域位置与循环前缀(Cyclic Prefix) 类型以及天线端口(Antenna port)号有关。

- 频域位置:与小区 PCI 以及天线端口(Antenna port)有关。同天线端口,在同一 Symbol 对应的频域上 2 个 CRS 的间隔是 6 个子载波。


PBCH(物理广播信道)
当 UE 通过主、次同步信道以及 DL-RS,同步到无线帧,和基站牵手成功后,下一步就需要拿到更多的的小区的细节信息。这依赖 eNB 广播的系统信息来获取,所以 UE 下一步就是通过 PBCH 来读取 MIB 系统消息。MIB 是 UE 同步后,拿到的第一个系统信息。MIB 包括有限个最重要、最常用的传输参数:
- 下行系统带宽,UE 通过这个来了解 eNB 的工作带宽。LTE 中分别有 1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz;
- PHICH(物理 HARO 指示信道)配置;
- 系统帧号,其实是系统帧号的前 8 位,最后 2 位是在 PBCH 盲检的时候得到的,总共 10 位;

PBCH 在时域上位于子帧 #0 的第 2 个 Slot 的前 4 个 OFDM Symbol,频域上占据 72 个中心子载波。PBCH 的加扰采用 GOLD 序列,调制采用 QPSK。通过盲检 PBCH,除了得到上述的 MIB 信息,还可以得到如下信息:
- 通过 40ms 内不同的 10ms 的 PBCH 的信息,可以得到 SFN(系统帧号)的低 2 位比特信息,这样就能组成完整的 SFN 值;
- 使用 3 种不同的 CRC mask 来盲检 PBCH,可得到天线端口数目(1, 2, 4);
- 得到天线端口数目后,就可以知道传输分集模式:
- 1 天线端口:无;
- 2天线端口:SFBC;
- 4天线端口:combined SFBC/FSTD。
所以,在盲检 PBCH 时,需要在 40ms 内检查到 MIB,同时使用 3 种不同 CRC mask 来确定天线端口数目,总共就有 12 种组合。
PDSCH(物理下行共享信道)
我们知道 LTE 的系统信息有 MIB 和 SIBs,通过信道的映射关系可以看见:PBCH 最终承载的只是 MIB,而 SIB 在 PHY 都走在 PDSCH 了。
PCFICH(物理控制格式指示信道)
前面讲述到搜索 SIBs 系统消息的时候,必然要解 PDSCH 中的 BCCH 信息。所以有必要知道 UE 是如何得到相关信息,最终顺利解出 SIB 信息,这里就必须了解下 PCFICH。
PCFICH的功能比较单一,简单来说,PCFICH 就是用来承载 CFI 的。LTE中,如果采用普通 CP,那么 1ms 的无线帧中,最多可以有 14 个 Symbol。协议规定,位于最前面的最多 4 个 Symbol 可以用于发送控制消息,这部分又叫控制区域,包括:L1/L2 的一些控制信息,如:PCFICH/PHICH/PDSCH,剩下的就是数据区域,如:PDSCH/PBCH/PSS/SSS。所谓 CFI,就是指示了前面究竟有几个 Symbol 用于发送控制消息的(1、2、3、4)。
3GPP 36.211 6.7-1表中,对 PCFICH 的符号个数做了如下规定:

4G EPS 中的小区搜索的更多相关文章
- 如何在个人博客引擎 Hexo 中添加 Swiftype 搜索组件
在您现在看到的我的博客站点,后台使用的是 Hexo 作为博客引擎,但是默认集成的搜索组件是进行 form 提交到 Google 进行搜索的,为了更好地体验,本文介绍如何在 Hexo 博客中集成 Swi ...
- 在eclipse的maven插件中搜寻本地仓库中的jar搜索不到的解决方案
在eclipse的maven插件中搜寻本地仓库中的jar搜索不到的解决方案 之前,用过maven管理项目的童鞋都知道本地会有一个${User_Home}.m2/repository仓库 是用来存放ja ...
- SharePoint 2013中规划企业搜索体系结构
摘要:了解如何规划小型.中型或大型企业搜索体系结构. 设置企业搜索体系结构之前,需要仔细规划很多事项.我们将逐步帮助您规划小型.中型或大型企业搜索体系结构. 您是否熟悉 SharePoint 2013 ...
- Eclipse中使用正则表达式搜索替换
Eclipse中使用正则表达式搜索替换 分类:software | 标签: 正则表达 替换 eclipse 2011-11-29 11:28 阅读(1930)评论(0)编辑删除 最近在eclip ...
- 在Android应用中实现Google搜索的例子
有一个很简单的方法在你的 Android 应用中实现 Google 搜索.在这个例子中,我们将接受用户的输入作为搜索词,我们将使用到 Intent.ACTION_WEB_SEARCH . Google ...
- 【Lucene3.6.2入门系列】第03节_简述Lucene中常见的搜索功能
package com.jadyer.lucene; import java.io.File; import java.io.IOException; import java.text.SimpleD ...
- 机器学习:使用scikit-learn库中的网格搜索调参
一.scikit-learn库中的网格搜索调参 1)网格搜索的目的: 找到最佳分类器及其参数: 2)网格搜索的步骤: 得到原始数据 切分原始数据 创建/调用机器学习算法对象 调用并实例化scikit- ...
- solr注意事项-solrconfig中的默认搜索域会覆盖schema中的默认搜索域,注意copyfeild中被corp的字段搜索
结论一:solrconfig.xml的默认搜索配置权限高于schema.xml中的默认搜索配置! 配置1:solrconfig.xml文件中关于select的配置: <requestHandle ...
- SQLite中使用全文搜索FTS
SQLite中使用全文搜索FTS SQLite支持全文搜索.通过全文搜索功能,可以方便用户快速进行查找.在iOS中,GRDB.FMDB等SQLite框架均支持FTS技术,如FTS3.FTS4等.各 ...
- Maven 项目中依赖的搜索顺序
Maven 项目中依赖的搜索顺序 http://www.manongjc.com/article/13422.html 执行过程中使用 -e -X 查看详细的搜索地址: 1,中央仓库,这是默认的仓库 ...
随机推荐
- #莫比乌斯反演,整除分块#洛谷 6222 「P6156 简单题」加强版
题目 多组询问,给出\(n,k\) 求 \[\sum_{i=1}^n\sum_{j=1}^n(i+j)^kgcd(i,j)\mu^2(gcd(i,j)) \] 对\(\text{unsigned}\) ...
- 动态库 DLL 封装三:对dll二次封装,并将回调函数放出去,供别人调用
背景: 我需要对一个dll进行二次封装,其中有一个接口,里面的参数需要传回调函数. 需求: 这个回调函数,我需要开放出去,让别人调用我的dll时,自己写这个回调函数 示例: // 回调原型 VOID ...
- 【鸿蒙生态千帆起】HarmonyOS系统级地图与位置服务,赋能广大开发者
在"与HarmonyOS同行,开放生态,共赢未来"为主题的HUAWEI Developer Day(简称HDD)沙龙中,Petal Maps为开发者们带来了在HarmonyOS下 ...
- HarmonyOS Lottie组件,让动画绘制更简单
原文:https://mp.weixin.qq.com/s/eC7g9ya4f_2AiNgteiyXcw,点击链接查看更多技术内容. 动画是UI界面的重要元素之一,精心设计的动画能使UI界面更直观,有 ...
- 动态规划(六)——树形dp
树形dp,又称树状dp,即在树上进行的dp,在设计动态规划算法时,一般就以节点从深到浅(子树从小到大)的顺序作为dp的"阶段",dp的状态表示中,第一维通常是节点编号(代表以该节点 ...
- 关于伺服刹车/急停/前后设备信号对接/PLC输入输出模块的公共端介绍
一.伺服刹车 关键词:急停,急停中间继电器.刹车中间继电器,刹车使能 正文: 通常情况不用硬件为主导而用程序来主导控制,多场景应用方便修改且安全可靠. 伺服刹车硬件,一般是24v电源给进去,就会释放刹 ...
- AI极速批量换脸!Roop-unleashed下载介绍,可直播
要说AI换脸领域,最开始火的项目就是Roop了,Roop-unleashed作为Roop的嫡系分支,不仅继承了前者的强大基因,更是在功能上实现了重大突破与升级 核心特性 1.可以进行高精度的图片.视频 ...
- Java实现查看手机配置与功能
"感谢您阅读本篇博客!如果您觉得本文对您有所帮助或启发,请不吝点赞和分享给更多的朋友.您的支持是我持续创作的动力,也欢迎留言交流,让我们一起探讨技术,共同成长!谢谢!" 代码 `` ...
- 飞桨PaddlePaddle的安装
飞桨PaddlePaddle的安装 MacOS 下的 PIP 安装 一.环境准备 1.1 如何查看您的环境 可以使用以下命令查看本机的操作系统和位数信息: uname -m && ca ...
- 极致体验!基于阿里云 Serverless 快速部署 Function
简介: 云计算的不断发展,涌现出很多改变传统 IT 架构和运维方式的新技术,而以虚拟机.容器.微服务为代表的技术更是在各个层面不断提升云服务的技术能力,它们将应用和环境中很多通用能力变成了一种服务.但 ...