首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法

Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型作为Bert特征提取,基本上完全解决了发音的bad case,同时在情感表达方面有大幅提升,可以作为先前V1.0.1纯中文版本更好的替代。
更多情报请参见Bert-vits2项目官网:
https://github.com/fishaudio/Bert-VITS2/releases/tag/Extra
本次我们基于Bert-vits2中文特化版本通过40秒素材复刻巫师3角色叶奈法(Yennefer)的音色。
配置Bert-vits2中文特化版本
首先克隆项目:
git clone https://github.com/v3ucn/Bert-VITS2-Extra_-.git
注意这里是针对官方的Extra分支的修改版本,增加了音频切分和转写。
随后下载新的纯中文底模:
https://openi.pcl.ac.cn/Stardust_minus/Bert-VITS2/modelmanage/show_model
同时还需要下载IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型的预训练模型:

值得一提的是,这个新炼的纯中文底模非常牛逼,官方作者仅通过一个5秒的素材就可以完美复刻音色。
关于作者的中文特化底模极限测试:
https://www.bilibili.com/video/BV1Fa4y1B7HB/
随后将模型放入对应的文件夹,bert模型文件结构如下:
E:\work\Bert-VITS2-Extra\bert>tree /f
Folder PATH listing for volume myssd
Volume serial number is 7CE3-15AE
E:.
│ bert_models.json
│
├───bert-base-japanese-v3
│ .gitattributes
│ config.json
│ README.md
│ tokenizer_config.json
│ vocab.txt
│
├───bert-large-japanese-v2
│ .gitattributes
│ config.json
│ README.md
│ tokenizer_config.json
│ vocab.txt
│
├───chinese-roberta-wwm-ext-large
│ .gitattributes
│ added_tokens.json
│ config.json
│ pytorch_model.bin
│ README.md
│ special_tokens_map.json
│ tokenizer.json
│ tokenizer_config.json
│ vocab.txt
│
├───deberta-v2-large-japanese
│ .gitattributes
│ config.json
│ pytorch_model.bin
│ README.md
│ special_tokens_map.json
│ tokenizer.json
│ tokenizer_config.json
│
├───deberta-v2-large-japanese-char-wwm
│ .gitattributes
│ config.json
│ pytorch_model.bin
│ README.md
│ special_tokens_map.json
│ tokenizer_config.json
│ vocab.txt
│
├───deberta-v3-large
│ .gitattributes
│ config.json
│ generator_config.json
│ pytorch_model.bin
│ README.md
│ spm.model
│ tokenizer_config.json
│
├───Erlangshen-DeBERTa-v2-710M-Chinese
│ config.json
│ special_tokens_map.json
│ tokenizer_config.json
│ vocab.txt
│
├───Erlangshen-MegatronBert-1.3B-Chinese
│ config.json
│ pytorch_model.bin
│ vocab.txt
│
└───Erlangshen-MegatronBert-3.9B-Chinese
config.json
special_tokens_map.json
tokenizer_config.json
vocab.txt
很明显,这里关于Erlangshen-MegatronBert大模型,其实有三个参数选择,有710m和1.3b以及3.9B,作者选择了居中的1.3b大模型。
这里介绍一下国产的Erlangshen-MegatronBert大模型。
Erlangshen-MegatronBert 是一个具有 39 亿参数的中文 BERT 模型,它是目前最大的中文 BERT 模型之一。这个模型的编码器结构为主,专注于解决各种自然语言理解任务。它同时,鉴于中文语法和大规模训练的难度,使用了四种预训练策略来改进 BERT,Erlangshen-MegatronBert 模型适用于各种自然语言理解任务,包括文本生成、文本分类、问答等,这个模型的权重和代码都是开源的,可以在 Hugging Face 和 CSDN 博客等平台上找到。
Erlangshen-MegatronBert 模型可以应用于多种领域,如 AI 模拟声音、数字人虚拟主播等。
另外需要注意的是,clap模型也已经回归,结构如下:
E:\work\Bert-VITS2-Extra\emotional\clap-htsat-fused>tree /f
Folder PATH listing for volume myssd
Volume serial number is 7CE3-15AE
E:.
.gitattributes
config.json
merges.txt
preprocessor_config.json
pytorch_model.bin
README.md
special_tokens_map.json
tokenizer.json
tokenizer_config.json
vocab.json
No subfolders exist
clap主要负责情感风格的引导。2.3版本去掉了,中文特化又加了回来。
至此模型就配置好了。
Bert-vits2中文特化版本训练和推理
首先把叶奈法的音频素材放入角色的raw目录。
随后需要对数据进行预处理操作:
python3 audio_slicer.py
python3 short_audio_transcribe.py
这里是切分和转写。
接着运行预处理的webui:
python3 webui_preprocess.py
这里需要注意的是,bert特征文件的生成会变慢,因为需要大模型的参与。
后续应该会有一些改进。
数据处理之后,应该包括重采样音频,bert特征文件,以及clap特征文件:
E:\work\Bert-VITS2-Extra\Data\Yennefer\wavs>tree /f
Folder PATH listing for volume myssd
Volume serial number is 7CE3-15AE
E:.
Yennefer_0.bert.pt
Yennefer_0.emo.pt
Yennefer_0.spec.pt
Yennefer_0.wav
Yennefer_1.bert.pt
Yennefer_1.emo.pt
Yennefer_1.spec.pt
Yennefer_1.wav
Yennefer_10.bert.pt
Yennefer_10.emo.pt
Yennefer_10.spec.pt
Yennefer_10.wav
Yennefer_11.bert.pt
Yennefer_11.emo.pt
Yennefer_11.spec.pt
Yennefer_11.wav
Yennefer_12.bert.pt
Yennefer_12.emo.pt
Yennefer_12.spec.pt
Yennefer_12.wav
Yennefer_13.bert.pt
Yennefer_13.emo.pt
Yennefer_13.spec.pt
Yennefer_13.wav
Yennefer_14.bert.pt
Yennefer_14.emo.pt
Yennefer_14.spec.pt
Yennefer_14.wav
Yennefer_15.bert.pt
Yennefer_15.emo.pt
Yennefer_15.spec.pt
Yennefer_15.wav
Yennefer_16.bert.pt
Yennefer_16.emo.pt
Yennefer_16.spec.pt
Yennefer_16.wav
Yennefer_17.bert.pt
Yennefer_17.emo.pt
Yennefer_17.spec.pt
Yennefer_17.wav
Yennefer_18.bert.pt
Yennefer_18.emo.pt
Yennefer_18.spec.pt
Yennefer_18.wav
Yennefer_19.bert.pt
Yennefer_19.emo.pt
Yennefer_19.spec.pt
Yennefer_19.wav
Yennefer_2.bert.pt
Yennefer_2.emo.pt
Yennefer_2.spec.pt
Yennefer_2.wav
Yennefer_20.bert.pt
Yennefer_20.emo.pt
Yennefer_20.spec.pt
Yennefer_20.wav
Yennefer_3.bert.pt
Yennefer_3.emo.pt
Yennefer_3.spec.pt
Yennefer_3.wav
Yennefer_4.bert.pt
Yennefer_4.emo.pt
Yennefer_4.spec.pt
Yennefer_4.wav
Yennefer_5.bert.pt
Yennefer_5.emo.pt
Yennefer_5.spec.pt
Yennefer_5.wav
Yennefer_6.bert.pt
Yennefer_6.emo.pt
Yennefer_6.spec.pt
Yennefer_6.wav
Yennefer_7.bert.pt
Yennefer_7.emo.pt
Yennefer_7.spec.pt
Yennefer_7.wav
Yennefer_8.bert.pt
Yennefer_8.emo.pt
Yennefer_8.spec.pt
Yennefer_8.wav
Yennefer_9.bert.pt
Yennefer_9.emo.pt
Yennefer_9.spec.pt
Yennefer_9.wav
随后训练即可:
python3 train_ms.py
结语
Bert-vits2中文特化版本引入了大模型,导致入门的门槛略微变高了一点,官方说至少需要8G显存才可以跑,实际上6G也是可以的,如果bert大模型选择参数更少的版本,相信运行的门槛会进一步的降低。
最后奉上整合包链接:
整合包链接:https://pan.quark.cn/s/754f236ef864
首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法的更多相关文章
- 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅
摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...
- 千亿参数开源大模型 BLOOM 背后的技术
假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM ...
- AI大模型学习了解
# 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...
- DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...
- 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00
武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...
- PowerDesigner 学习:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- PowerDesigner 15学习笔记:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- 文心大模型api使用
文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...
- 《zw版·delphi与halcon系列原创教程》zw版_THOperatorSetX控件函数列表 v11中文增强版
<zw版·delphi与halcon系列原创教程>zw版_THOperatorSetX控件函数列表v11中文增强版 Halcon虽然庞大,光HALCONXLib_TLB.pas文件,源码就 ...
- xshell 5中文破解版下载
xshell 5破解版是一款功能强大的终端模拟软件,支持Telnet.Rlogin.SSH.SFTP.Serial等远程协议,让用户能通过互联网直接连接远程主机.用户通过xshell 5破解版能轻松和 ...
随机推荐
- Solution Set -「CF 1539」
我是傻逼. 「CF 1539A」Contest Start Link. 答案是 \(\sum_{i=1}^{n-1}\min\{i,\lfloor\frac{t}{x}\rfloor\}\),等差数列 ...
- 洛谷题解 | AT_abc321_c Primes on Interval
目录 题目翻译 题目描述 输入格式 输出格式 样例 #1 样例输入 #1 样例输出 #1 样例 #2 样例输入 #2 样例输出 #2 样例 #3 样例输入 #3 样例输出 #3 题目简化 题目思路 A ...
- Go 常用命令介绍
Go 常用命令 目录 Go 常用命令 一.Go 常用命令 1.1 go build 1.1.1 指定输出目录 1.1.2 常用环境变量设置编译操作系统和 CPU 架构 1.1.3 查看支持的操作系统和 ...
- Installing Gradle
Chapter 4. Installing Gradle 4.1. Prerequisites Gradle requires a Java JDK or JRE to be installed, v ...
- 从内核世界透视 mmap 内存映射的本质(源码实现篇)
本文基于内核 5.4 版本源码讨论 通过上篇文章 <从内核世界透视 mmap 内存映射的本质(原理篇)>的介绍,我们现在已经非常清楚了 mmap 背后的映射原理以及它的使用方法,其核心就是 ...
- 揭秘计算机指令执行的神秘过程:CPU内部的绝密操作
计算机指令 从软件工程师的角度来看,CPU是执行计算机指令的逻辑机器.计算机指令可以看作是CPU能够理解的语言,也称为机器语言. 不同的CPU能理解的语言不同.例如,个人电脑使用Intel的CPU,苹 ...
- 关于PaddleOCR识别时中文路径导致报错/没输出结果
此处只做学习PaddleOCR时遇到的一些坑 一.Python版本与PaddleOCR兼容性问题 如果你在Python11的环境下安装PaddlePaddle,使用 paddleocr --image ...
- java学习内容-2
目录 java编程基础 (一)变量的数据类型 (二)类型转换 (三)运算符 (四)数组 (五)构造函数 (六)static (七)final (八)继承1 (九)覆盖(override) (十)sup ...
- tomcat nio2源码分析
一. 前言 最近在看tomcat connector组件的相关源码,对Nio2的异步回调过程颇有兴趣,平时读源码不读,自己读的时候很多流程都没搞明白,去查网上相关解析讲的给我感觉也不是特别清晰,于 ...
- Vue源码学习(十四):diff算法patch比对
好家伙, 本篇将会解释要以下效果的实现 1.目标 我们要实现以下元素替换的效果 gif: 以上例子的代码: //创建vnode let vm1 = new Vue({data:{name:'张三' ...