Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型作为Bert特征提取,基本上完全解决了发音的bad case,同时在情感表达方面有大幅提升,可以作为先前V1.0.1纯中文版本更好的替代。

更多情报请参见Bert-vits2项目官网:

https://github.com/fishaudio/Bert-VITS2/releases/tag/Extra

本次我们基于Bert-vits2中文特化版本通过40秒素材复刻巫师3角色叶奈法(Yennefer)的音色。

配置Bert-vits2中文特化版本

首先克隆项目:

git clone https://github.com/v3ucn/Bert-VITS2-Extra_-.git

注意这里是针对官方的Extra分支的修改版本,增加了音频切分和转写。

随后下载新的纯中文底模:

https://openi.pcl.ac.cn/Stardust_minus/Bert-VITS2/modelmanage/show_model

同时还需要下载IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型的预训练模型:

值得一提的是,这个新炼的纯中文底模非常牛逼,官方作者仅通过一个5秒的素材就可以完美复刻音色。

关于作者的中文特化底模极限测试:

https://www.bilibili.com/video/BV1Fa4y1B7HB/

随后将模型放入对应的文件夹,bert模型文件结构如下:

E:\work\Bert-VITS2-Extra\bert>tree /f
Folder PATH listing for volume myssd
Volume serial number is 7CE3-15AE
E:.
│ bert_models.json

├───bert-base-japanese-v3
│ .gitattributes
│ config.json
│ README.md
│ tokenizer_config.json
│ vocab.txt

├───bert-large-japanese-v2
│ .gitattributes
│ config.json
│ README.md
│ tokenizer_config.json
│ vocab.txt

├───chinese-roberta-wwm-ext-large
│ .gitattributes
│ added_tokens.json
│ config.json
│ pytorch_model.bin
│ README.md
│ special_tokens_map.json
│ tokenizer.json
│ tokenizer_config.json
│ vocab.txt

├───deberta-v2-large-japanese
│ .gitattributes
│ config.json
│ pytorch_model.bin
│ README.md
│ special_tokens_map.json
│ tokenizer.json
│ tokenizer_config.json

├───deberta-v2-large-japanese-char-wwm
│ .gitattributes
│ config.json
│ pytorch_model.bin
│ README.md
│ special_tokens_map.json
│ tokenizer_config.json
│ vocab.txt

├───deberta-v3-large
│ .gitattributes
│ config.json
│ generator_config.json
│ pytorch_model.bin
│ README.md
│ spm.model
│ tokenizer_config.json

├───Erlangshen-DeBERTa-v2-710M-Chinese
│ config.json
│ special_tokens_map.json
│ tokenizer_config.json
│ vocab.txt

├───Erlangshen-MegatronBert-1.3B-Chinese
│ config.json
│ pytorch_model.bin
│ vocab.txt

└───Erlangshen-MegatronBert-3.9B-Chinese
config.json
special_tokens_map.json
tokenizer_config.json
vocab.txt

很明显,这里关于Erlangshen-MegatronBert大模型,其实有三个参数选择,有710m和1.3b以及3.9B,作者选择了居中的1.3b大模型。

这里介绍一下国产的Erlangshen-MegatronBert大模型。

Erlangshen-MegatronBert 是一个具有 39 亿参数的中文 BERT 模型,它是目前最大的中文 BERT 模型之一。这个模型的编码器结构为主,专注于解决各种自然语言理解任务。它同时,鉴于中文语法和大规模训练的难度,使用了四种预训练策略来改进 BERT,Erlangshen-MegatronBert 模型适用于各种自然语言理解任务,包括文本生成、文本分类、问答等,这个模型的权重和代码都是开源的,可以在 Hugging Face 和 CSDN 博客等平台上找到。

Erlangshen-MegatronBert 模型可以应用于多种领域,如 AI 模拟声音、数字人虚拟主播等。

另外需要注意的是,clap模型也已经回归,结构如下:

E:\work\Bert-VITS2-Extra\emotional\clap-htsat-fused>tree /f
Folder PATH listing for volume myssd
Volume serial number is 7CE3-15AE
E:.
.gitattributes
config.json
merges.txt
preprocessor_config.json
pytorch_model.bin
README.md
special_tokens_map.json
tokenizer.json
tokenizer_config.json
vocab.json No subfolders exist

clap主要负责情感风格的引导。2.3版本去掉了,中文特化又加了回来。

至此模型就配置好了。

Bert-vits2中文特化版本训练和推理

首先把叶奈法的音频素材放入角色的raw目录。

随后需要对数据进行预处理操作:

python3 audio_slicer.py
python3 short_audio_transcribe.py

这里是切分和转写。

接着运行预处理的webui:

python3 webui_preprocess.py

这里需要注意的是,bert特征文件的生成会变慢,因为需要大模型的参与。

后续应该会有一些改进。

数据处理之后,应该包括重采样音频,bert特征文件,以及clap特征文件:

E:\work\Bert-VITS2-Extra\Data\Yennefer\wavs>tree /f
Folder PATH listing for volume myssd
Volume serial number is 7CE3-15AE
E:.
Yennefer_0.bert.pt
Yennefer_0.emo.pt
Yennefer_0.spec.pt
Yennefer_0.wav
Yennefer_1.bert.pt
Yennefer_1.emo.pt
Yennefer_1.spec.pt
Yennefer_1.wav
Yennefer_10.bert.pt
Yennefer_10.emo.pt
Yennefer_10.spec.pt
Yennefer_10.wav
Yennefer_11.bert.pt
Yennefer_11.emo.pt
Yennefer_11.spec.pt
Yennefer_11.wav
Yennefer_12.bert.pt
Yennefer_12.emo.pt
Yennefer_12.spec.pt
Yennefer_12.wav
Yennefer_13.bert.pt
Yennefer_13.emo.pt
Yennefer_13.spec.pt
Yennefer_13.wav
Yennefer_14.bert.pt
Yennefer_14.emo.pt
Yennefer_14.spec.pt
Yennefer_14.wav
Yennefer_15.bert.pt
Yennefer_15.emo.pt
Yennefer_15.spec.pt
Yennefer_15.wav
Yennefer_16.bert.pt
Yennefer_16.emo.pt
Yennefer_16.spec.pt
Yennefer_16.wav
Yennefer_17.bert.pt
Yennefer_17.emo.pt
Yennefer_17.spec.pt
Yennefer_17.wav
Yennefer_18.bert.pt
Yennefer_18.emo.pt
Yennefer_18.spec.pt
Yennefer_18.wav
Yennefer_19.bert.pt
Yennefer_19.emo.pt
Yennefer_19.spec.pt
Yennefer_19.wav
Yennefer_2.bert.pt
Yennefer_2.emo.pt
Yennefer_2.spec.pt
Yennefer_2.wav
Yennefer_20.bert.pt
Yennefer_20.emo.pt
Yennefer_20.spec.pt
Yennefer_20.wav
Yennefer_3.bert.pt
Yennefer_3.emo.pt
Yennefer_3.spec.pt
Yennefer_3.wav
Yennefer_4.bert.pt
Yennefer_4.emo.pt
Yennefer_4.spec.pt
Yennefer_4.wav
Yennefer_5.bert.pt
Yennefer_5.emo.pt
Yennefer_5.spec.pt
Yennefer_5.wav
Yennefer_6.bert.pt
Yennefer_6.emo.pt
Yennefer_6.spec.pt
Yennefer_6.wav
Yennefer_7.bert.pt
Yennefer_7.emo.pt
Yennefer_7.spec.pt
Yennefer_7.wav
Yennefer_8.bert.pt
Yennefer_8.emo.pt
Yennefer_8.spec.pt
Yennefer_8.wav
Yennefer_9.bert.pt
Yennefer_9.emo.pt
Yennefer_9.spec.pt
Yennefer_9.wav

随后训练即可:

python3 train_ms.py

结语

Bert-vits2中文特化版本引入了大模型,导致入门的门槛略微变高了一点,官方说至少需要8G显存才可以跑,实际上6G也是可以的,如果bert大模型选择参数更少的版本,相信运行的门槛会进一步的降低。

最后奉上整合包链接:

整合包链接:https://pan.quark.cn/s/754f236ef864

首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法的更多相关文章

  1. 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅

    摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...

  2. 千亿参数开源大模型 BLOOM 背后的技术

    假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM ...

  3. AI大模型学习了解

    # 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...

  4. DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍

    DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...

  5. 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00

    武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...

  6. PowerDesigner 学习:十大模型及五大分类

    个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...

  7. PowerDesigner 15学习笔记:十大模型及五大分类

    个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...

  8. 文心大模型api使用

    文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...

  9. 《zw版·delphi与halcon系列原创教程》zw版_THOperatorSetX控件函数列表 v11中文增强版

    <zw版·delphi与halcon系列原创教程>zw版_THOperatorSetX控件函数列表v11中文增强版 Halcon虽然庞大,光HALCONXLib_TLB.pas文件,源码就 ...

  10. xshell 5中文破解版下载

    xshell 5破解版是一款功能强大的终端模拟软件,支持Telnet.Rlogin.SSH.SFTP.Serial等远程协议,让用户能通过互联网直接连接远程主机.用户通过xshell 5破解版能轻松和 ...

随机推荐

  1. heygen模型接口 简单使用 java版

    HeyGen - AI Spokesperson Video Creator  官网地址 Create a video (heygen.com) api地址 简介: 公司最近对ai方面业务比较感兴趣了 ...

  2. Sentinel系列之SlotChain、NodeSelectorSlot、ClusterBuilderSlot分析

    本文基于Sentinel 1.8.6版本分析 1. SlotChain 我们从入口com.alibaba.csp.sentinel.SphU#entry(java.lang.String) 开始分析. ...

  3. c语言代码练习10(改进)

    #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> #include <string.h> #include <ma ...

  4. 【Azure Function App】Python Function调用Powershell脚本在Azure上执行失败的案例

    问题描述 编写Python Function,并且在Function中通过 subprocess  调用powershell.exe 执行 powershell脚本. import azure.fun ...

  5. 低代码平台探讨-MetaStore元数据缓存

    背景及需求 之前提到我们模型驱动的实现选择的是解释型,需要模型的元数据信息,在接到请求后动态处理逻辑. 此外,应用的通用能力中还包括:页面dsl查询,菜单查询等. 而且后期加入触发器,用户自定义api ...

  6. Go语言代码断行规则详解

    本文深入探讨了Go语言中代码断行的各个方面,从基础概念到实际应用实践. 关注[TechLeadCloud],分享互联网架构.云服务技术的全维度知识.作者拥有10+年互联网服务架构.AI产品研发经验.团 ...

  7. Lora升级!ReLoRa!最新论文 High-Rank Training Through Low-Rank Updates

    关注公众号TechLead,分享AI与云服务技术的全维度知识.作者拥有10+年互联网服务架构.AI产品研发经验.团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专 ...

  8. Dubbo 路由及负载均衡性能优化

    作者:vivo 互联网中间件团队- Wang Xiaochuang 本文主要介绍在vivo内部针对Dubbo路由模块及负载均衡的一些优化手段,主要是异步化+缓存,可减少在RPC调用过程中路由及负载均衡 ...

  9. Codeforces Round 823 (Div. 2)C

    C. Minimum Notation 思路:我们可以进行的操作时将一个位置的数删除然后在任意位置处添加一个比当前数大1并且小于9的数,所以我们的操作只会让一个数变大,我们统计一个最大值的后缀,贪心的 ...

  10. React学习笔记16-属性props

    1.属性的定义 props 是正常是外部传入的,组件内部也可以通过一些方式来初始化的设置,属性不能被组件自己更 改,但是你可以通过父组件主动重新渲染的方式来传入新的 props. 这就是React中的 ...