接下来上一篇文章《 SQL优化案例(1):隐式转换》的介绍,此处内容围绕OR的优化展开。

在MySQL中,同样的查询条件,如果变换OR在SQL语句中的位置,那么查询的结果也会有差异,在多个复杂的情况下,可能会带来索引选择不佳的性能隐患,为了避免执行效率大幅度下降的问题,我们可以适当考虑使用统一所有对查询逻辑复杂的SQL进行分离。

常见OR使用场景,请阅读以下案例。

案例一:不同列使用OR条件查询

1.待优化场景

SELECT
..
..
FROM`t1` a
WHERE a.token= '16149684'
AND a.store_id= '242950'
AND(a.registrationId IS NOT NULL
AND a.registrationId<> '')
OR a.uid= 308475
AND a.registrationId IS NOT NULL
AND a.registrationId<> ''

执行计划

+--------------+-----------------------+-----------------+----------------+-------------------+-------------------+---------------+----------------+---------------------------------------------+
| id | select_type | table | type | key | key_len | ref | rows | Extra |
+--------------+-----------------------+-----------------+----------------+-------------------+-------------------+---------------+----------------+---------------------------------------------+
| 1 | SIMPLE | a | range |idx_registrationid | 99 | | 100445 | Using index condition; Using where |
+--------------+-----------------------+-----------------+----------------+-------------------+-------------------+---------------+----------------+---------------------------------------------+

共返回1行记录,花费 5 ms 。

2.场景解析

从查询条件中可以研磨令牌和uid过滤性都非常好,但是由于使用了,或者,需要采用索引合并的方法才能获得比较好的性能。但在实际执行过程中MySQL优化器替代选择了使用registrationId的索引,导致SQL的性能很差。

3.场景优化

我们将SQL改写成union all的形式。

SELECT
...
...
FROM`t1` a
WHERE a.token = '16054473'
AND a.store_id = '138343'
AND b.is_refund = 1
AND (a.registrationId IS NOT NULL
AND a.registrationId <> '')
union all
SELECT
...
...
FROM`t1` a
where a.uid = 181579
AND a.registrationId IS NOT NULL
AND a.registrationId <> ''
+--------------+-----------------------+-----------------+----------------+------------------------------+---------------+-------------------+------------------------------+----------------+------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+--------------+-----------------------+-----------------+----------------+------------------------------+---------------+-------------------+------------------------------+----------------+------------------------------------+
| 1 | PRIMARY | a | ref | IDX_TOKEN,IDX_STORE_ID_TOKEN | IDX_TOKEN | 63 | const | 1 | Using index condition; Using where |
| 1 | PRIMARY | b | eq_ref | PRIMARY | PRIMARY | 4 | youdian_life_sewsq.a.role_id | 1 | Using where |
| 2 | UNION | a | const | PRIMARY | PRIMARY | 4 | const | 1 | |
| 2 | UNION | b | const | PRIMARY | PRIMARY | 4 | const | 0 | unique row not found |
| | UNION RESULT | <union1,2> | ALL | | | | | | Using temporary |
+--------------+-----------------------+-----------------+----------------+------------------------------+---------------+-------------------+------------------------------+----------------+------------------------------------+

共返回5行记录,花费 5 ms 。

通过对比优化前后的执行计划,可以明显修剪,将SQL合并成两个子查询,再使用union对结果进行合并,稳定性和安全性更好,性能更高。

案例二:同一列使用OR查询条件

1.待优化场景

select
....
....
from
t1 as mci
left join t1 as ccv2_1 on ccv2_1.unique_no = mci=category_no1
left join t1 as ccv2_2 on ccv2_2.unique_no = mci=category_no2
left join t1 as ccv2_3 on ccv2_3.unique_no = mci=category_no3
left join(
select product_id,
count(0) count
from t2 pprod
inner join t3 pinfo on pinfo.promotion_id = pprod.promotion_id
and pprod.is_enable =1
and ppinfo.is_enable=1
and pinfo.belong_t0 =1
and pinfo.end_time >=now()
and not (
pinfo.onshelv_time>'2019-06-30 00:00:00'
or pinfo.end_time>'2018-12-05 00:00:00'
)group by pprod.product_id
)as pc on pc.product_id = mci.product_id
where mci.is_enable =0
and mci.comodifty_type in ('1', '5', '6')
and (pc.count =0 or pc.count isnull ) limit 0,5;

执行计划

2.场景解析

本例的SQL查询中有一个子查询,子查询被当成成驱动表,产生了auto_key,通过SQL进行进行测试,验证主要是(pc.count = 0或pc.count为null)会影响到整个SQL的性能,需要进行比较改写。

3.场景优化

首先我们可以单独思考(pc.count = 0或pc.count为null)如何进行优化?先写一个类似的SQL

Select col from test where col =100 or col is null;
+--------+
| col |
+--------+
| 100 |
| NULL |
+--------+
2 rows in set (0.00 sec)

这个时候我们看到的其实是同一个列,但对应不同的值,这种情况可以利用case when进行转换。

Select col From test where case when col is null then 100 else col =100 end;
+--------+
| col |
+--------+
| 100 |
| NULL |
+--------+
2 rows in set (0.00 sec)

再回到原始SQL进行改写。

select
....
....
from
t1 as mci
left join t1 as ccv2_1 on ccv2_1.unique_no = mci=category_no1
left join t1 as ccv2_2 on ccv2_2.unique_no = mci=category_no2
left join t1 as ccv2_3 on ccv2_3.unique_no = mci=category_no3
left join(
select product_id,
count(0) count
from t2 pprod
inner join t3 pinfo on pinfo.promotion_id = pprod.promotion_id
and pprod.is_enable =1
and ppinfo.is_enable=1
and pinfo.belong_t0 =1
and pinfo.end_time >=now()
and not (
pinfo.onshelv_time>'2019-06-30 00:00:00'
or pinfo.end_time>'2018-12-05 00:00:00'
)group by pprod.product_id
)as pc on pc.product_id = mci.product_id
where mci.is_enable =0
and mci.comodifty_type in ('1', '5', '6')
and case when pc.count is null then 0 else pc.count end=0 limit 0,5;

可以抛光优化后的SQL比原始SQL快了30秒,执行效率提升约50倍。

案例三:优化关联SQL OR条件

1.待优化场景

SELECT user_msg.msg_id AS ‘msg_id’, user_msg.content AS ‘msg_content’, …
FROM user_msg
LEFT JOIN user ON user_msg.user_id = user.user_id
LEFT JOIN group ON user_msg.group_id = group.group_id
WHERE user_msg.gmt_modified >= date_sub('2018-03-29 09:31:44', INTERVAL30SECOND)
OR user.gmt_modified >= date_sub('2018-03-29 09:31:44', INTERVAL 30 SECOND)
OR group.gmt_modified >= date_sub('2018-03-29 09:31:44', INTERVAL 30 SECOND)

2.场景解析

我们仔细分析上述查询语句,发现虽然业务逻辑只需要查询半分钟内修改的数据,但执行过程却必须对所有的数据进行关联操作,带来的性能损失。

3.场景优化

我们对原始SQL进行分解操作,第一部分sql-01如下:

SELECT user_msg.msg_id AS ‘msg_id’, user_msg.content AS ‘msg_content’, …
FROM user_msg
LEFT JOIN user ON user_msg.user_id = user.user_id
LEFT JOIN group ON user_msg.group_id = group.group_id
WHERE user_msg.gmt_modified >= date_sub('2018-03-29 09:31:44', INTERVAL 30 SECOND)

sql-01以user_msg表为驱动,使用gmt_modified索引过滤最新数据。

第二部分sql-02如下:

SELECT user_msg.msg_id AS ‘msg_id’, user_msg.content AS ‘msg_content’, …
FROM user_msg
LEFT JOIN user ON user_msg.user_id = user.user_id
LEFT JOIN group ON user_msg.group_id = group.group_id
WHERE user.gmt_modified >= date_sub('2018-03-29 09:31:44', INTERVAL 30 SECOND)

sql-02以用户为驱动表,msg user_id的索引过滤行很好。

第三部分sql-03如下:

SELECT user_msg.msg_id AS ‘msg_id’, user_msg.content AS ‘msg_content’, …
FROM user_msg
LEFT JOIN user ON user_msg.user_id = user.user_id
LEFT JOIN group ON user_msg.group_id = group.group_id
WHERE group.gmt_modified >= date_sub('2018-03-29 09:31:44', INTERVAL 30 SECOND)

sql-03以group为驱动表,使用gmt_modified索引过滤最新数据。

总结

MySQL OR条件优化的常见场景主要有以下情况:

1,相同列可以使用IN进行代替

2,不同列及复杂的情况下,可以使用union all进行分离

3,关联SQL OR条件

我们需要结合实际场景,分析优化。

更多技术可以去官网查看https://www.dtstack.com/dtsmart/

SQL优化案例(2):OR条件优化的更多相关文章

  1. 优化案例--改写IN条件为INNER JOIN

    --====================================== --原始语句 SET STATISTICS IO ON SELECT COUNT(DISTINCT parent_co ...

  2. MySQL参数优化案例

    环境介绍 优化层级与指导思想 优化过程 最小化安装情况下的性能表现 优化innodb_buffer_pool_size 优化innodb_log_files_in_group&innodb_l ...

  3. SQL性能优化案例分析

    这段时间做一个SQL性能优化的案例分析, 整理了一下过往的案例,发现一个比较有意思的,拿出来给大家分享. 这个项目是我在项目开展2期的时候才加入的, 之前一期是个金融内部信息门户, 里面有个功能是收集 ...

  4. SQL 优化案例 1

    create or replace procedure SP_GET_NEWEST_CAPTCHA( v_ACCOUNT_ID in VARCHAR2, --接收短信的手机号 v_Tail_num i ...

  5. sqlserver sql优化案例及思路

    始sql: SELECT TOP 100 PERCENT ZZ.CREW_NAME AS 机组, ZZ.CREW_ID, AA.年度时间, CC.当月时间, DD.连续七天时间 AS 最近七天 FRO ...

  6. SQL 优化案例

    create or replace procedure SP_GET_NEWEST_CAPTCHA( v_ACCOUNT_ID in VARCHAR2, --接收短信的手机号 v_Tail_num i ...

  7. 百倍性能的PL/SQL优化案例(r11笔记第13天)

    我相信你是被百倍性能的字样吸引了,不过我所想侧重的是优化的思路,这个比优化技巧更重要,而结果嘛,其实我不希望说成是百倍提升,“”自黑“”一下. 有一个真实想法和大家讨论一下,就是一个SQL语句如果原本 ...

  8. Hive优化案例

    1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...

  9. (4.13)SQL Server profile使用、数据库优化引擎顾问使用

    SQL Server profile使用技巧 介绍 经常会有人问profile工具该怎么使用?有没有方法获取性能差的sql的问题.自从转mysql我自己也差不多2年没有使用profile,忽然prof ...

  10. MySQL的索引单表优化案例分析

    建表 建立本次优化案例中所需的数据库及数据表 CREATE DATABASE db0206; USE db0206; CREATE TABLE `db0206`.`article`( `id` INT ...

随机推荐

  1. Prometheus + Grafana 搭建监控系统

    前言 本文主要记录下如何使用 Prometheus + Grafana 搭建对各种服务的性能监控,涵盖对 Prometheus.Grafana 的基本介绍,以及如何使用二者进行对 Linux.MySQ ...

  2. 专为小白打造—Kafka一篇文章从入门到入土

    一.什么是Kafka MQ消息队列作为最常用的中间件之一,其主要特性有:解耦.异步.限流/削峰. Kafka 和传统的消息系统(也称作消息中间件)都具备系统解耦.冗余存储.流量削峰.缓冲.异步通信.扩 ...

  3. SSM(Spring+SpringMVC+MyBatis)框架集成

    引言 进行SSM(Spring+SpringMVC+MyBatis)集成的主要原因是为了提高开发效率和代码可维护性.SSM是一套非常流行的Java Web开发框架,它集成了Spring框架.Sprin ...

  4. python第2~5章 学习笔记

    # 第2~5章 学习笔记 ## 什么是计算机语言 计算机就是一台用来计算机的机器,人让计算机干什么计算机就得干什么! 需要通过计算机的语言来控制计算机(编程语言)! 计算机语言其实和人类的语言没有本质 ...

  5. 触发器引起的ADG备库同步错误

    数据库alert日志报错ORA-16000,查看对应的trc文件,大致如下报错: *** 2020-10-27 14:09:03.340*** SESSION ID:(3340.75) 2020-10 ...

  6. 若依(ruoyi)开源系统保姆级实践-完成第一个页面

    一.案例描述 若依官网文档地址:http://doc.ruoyi.vip/ruoyi/document/hjbs.html 本教程主要内容,自定义数据库表,使用若依开源系统生成代码并配置权限. 若依环 ...

  7. Cloud Bursting解决方案,Serverless容器降本增效极致体验

    本文分享自华为云社区<DTSE Tech Talk | 第42期:Cloud Bursting解决方案,Serverless容器降本增效极致体验>,作者:华为云社区精选. 线下IDC自建K ...

  8. python代码签到学习同

    仅用于学习使用 import requests,json,time #填入Cookie headers={ "Cookie": "", "User-A ...

  9. 【pwn】ciscn_2019_s_3 -- rop,gadget利用,泄露栈地址

    这道题挺好的,可以帮助我更好的理解gadget的利用以及rop技术 首先,查一下程序保护情况 拖进ida分析 这里sys_read和sys_write是系统调用函数,看汇编可以分析出来 我们首先要了解 ...

  10. 带您了解 O2OA 流程中的人工活动处理方式

    这次咱们来介绍 O2OA (翱途) 开发平台流程引擎中的人工活动的处理方式和逻辑,O2OA (翱途) 主要采用拖拽可视化开发的方式完成流程的设计和配置,不需要过多的代码编写,业务人员可以直接进行修改操 ...