题目描述:给出一棵 \(n\) 个点的树,点有颜色 \(C_i\),长度为 \(m\) 的数组 \(V\) 和长度为 \(n\) 的数组 \(W\)。有两种操作:

  1. 将 \(C_x\) 修改为 \(y\)。

  2. 求 \(u\) 到 \(v\) 的链的 \(\sum\limits_{i=1}^m\sum\limits_{j=1}^{cnt_i}W_j\),其中 \(cnt_i\) 表示颜色 \(i\) 的出现次数。

数据范围:\(n,m\le 10^5,1\le C_i\le m\),时限6s(洛谷)或8s(UOJ)。


这是树上带修莫队的模板题。

首先我们看树分块怎么做,所以要来先做这道题

直接讲做法了:我们是尽可能在底层把大小 \(\ge B\) 的联通块作为一块,剩下的扔给父亲合并。就是要开一个stack,维护当前还没有被分块的点。不停递归儿子,一旦已经有一个 \(\ge B\) 的连通块了,就把它们作为一块,设首都为 \(x\)(当前dfs的点)。最后把 \(x\) 放进栈中。最后递归完还要把栈中剩下的点放入最后一个块,并把首都设为 \(1\)。

inline void dfs(int x, int f){
int t = top;
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != f){
dfs(to[i], x);
if(top >= t + B){
rt[++ num] = x;
while(top > t) in[stk[top --]] = num;
}
}
stk[++ top] = x;
}
int main(){
// ...
dfs(1, 0);
if(!num) num = 1;
rt[num] = 1;
while(top) in[stk[top --]] = num;
// ...
}

我们知道没有合并,即大小 \(<B\),合并之后 \(<2B\)。就算最后一个连通块也至多有 \(<3B\),所以是比较均匀的。

然后我们看看如何从链 \((u,v)\) 变为 \((u',v')\) 并且时间复杂度为 \(O(\text{len}(u,u')+\text{len}(v,v'))\)。

首先我们改为维护 \((u,v)\) 中抠掉 \(lca\) 的答案,\(cnt\) 和每个点是否在里面的 \(vis\)。设 \(L(u,v)\) 为 \(u\) 到 \(v\) 这条链上抠掉 \(lca\) 的点集,\(\oplus\) 为集合对称差(\(A\oplus B=(A\cup B)-(A\cap B)\)),\(S(u)\) 为 \(1\) 到 \(u\) 的这条链的点集。则 \(L(u,v)=S(u)\oplus S(v)\),且集合对称差肯定是有交换、结合律的。

\[\begin{aligned}
L(u',v')&=L(u',v')\oplus L(u,v)\oplus L(u,v) \\
&=S(u')\oplus S(v')\oplus S(u)\oplus S(v)\oplus S(u) \oplus S(v) \\
&=(S(u')\oplus S(u))\oplus(S(v)\oplus S(v'))\oplus(S(u)\oplus S(v)) \\
&=L(u,u')\oplus L(v,v')\oplus L(u,v)
\end{aligned}
\]

于是就直接是将 \(L(u,u')\) 和 \(L(v,v')\) 全部 \(vis\) 取反就是 \(L(u',v')\),然后把 \(lca\) 取反就是 \(u'\) 到 \(v'\) 这条链。

至于带修莫队怎么做,就去看这道题。取 \(B\) 比 \(n^\frac{2}{3}\) 少一点点就可以,时间复杂度 \(O(n^\frac{5}{3}+n\log n)\)。

code

```cpp
#include
#define Rint register int
using namespace std;
typedef long long LL;
const int N = 100003;
int n, m, B, q, ql, qr, qnow, qnum, cnum, V[N], W[N], C[N], head[N], to[N siz[wson[x]]) wson[x] = to[i];
if(tp >= tmp + B){
++ bnum;
while(tp > tmp) bel[stk[tp --]] = bnum;
}
}
stk[++ tp] = x;
}
inline void dfs2(int x, int topf){
top[x] = topf;
if(wson[x]) dfs2(wson[x], topf);
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != wson[x] && to[i] != fa[x])
dfs2(to[i], to[i]);
}
inline int lca(int u, int v){
while(top[u] != top[v]){
if(dep[top[u]] dep[v]){work(u); u = fa[u];}
while(u != v){work(u); u = fa[u]; work(v); v = fa[v];}
}
inline void change(int i){
int u = cha[i].u;
if(vis[u]){
work(u); swap(C[u], cha[i].val); work(u);
} else swap(C[u], cha[i].val);
}
int main(){
scanf("%d%d%d", &n, &m, &q); B = pow(n, 2.0 / 3);
for(Rint i = 1;i que[i].tim) change(qnow --);
int LCA = lca(tl, tr);
work(LCA); ans[que[i].id] = qans; work(LCA);
}
for(Rint i = 1;i

LG4074【WC2013】糖果公园 【树上莫队,带修莫队】的更多相关文章

  1. BZOJ3052/UOJ#58 [wc2013]糖果公园 莫队 带修莫队 树上莫队

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3052.html 题目传送门 - BZOJ3052 题目传送门 - UOJ#58 题意 给定一棵树,有 ...

  2. BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)

    题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...

  3. luogu4074 [WC2013]糖果公园(树上带修莫队)

    link 题目大意:给一个树,树上每个点都有一种颜色,每个颜色都有一个收益 每次修改一个点上的颜色 或询问一条链上所有颜色第i次遇到颜色j可以获得w[i]*v[j]的价值,求链上价值和 题解:树上带修 ...

  4. LUOGU P4074 [WC2013]糖果公园 (树上带修莫队)

    传送门 解题思路 树上带修莫队,搞了两天..终于开O2+卡常大法贴边过了...bzoj上跑了183s..其实就是把树上莫队和带修莫队结合到一起,首先求出括号序,就是进一次出一次那种的,然后如果求两个点 ...

  5. BZOJ2120 数颜色 莫队 带修莫队

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2120.html 题目传送门 - BZOJ2120 题意 给定一个长度为 $n$ 的序列 $a$ ,有 ...

  6. P4074 [WC2013]糖果公园 树上莫队带修改

    题目链接 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 nn 个游览点构 ...

  7. BZOJ3052:[WC2013]糖果公园(树上莫队)

    Description Input Output Sample Input 4 3 51 9 27 6 5 12 33 13 41 2 3 21 1 21 4 20 2 11 1 21 4 2 Sam ...

  8. BZOJ 3052: [wc2013]糖果公园 | 树上莫队

    题目: UOJ也能评测 题解 请看代码 #include<cstdio> #include<algorithm> #include<cstring> #includ ...

  9. 【Luogu P4074】[WC2013]糖果公园(树上带修改莫队)

    题目描述 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 \(n\) 个游 ...

随机推荐

  1. C#explicit和implicit关键字实现类型转换

    using System; namespace ConsoleTest { class Program { static void Main(string[] args) { //implicit 隐 ...

  2. C# vb .net实现像素化效果滤镜打马赛克

    在.net中,如何简单快捷地实现Photoshop滤镜组中的像素化效果打马赛克呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授 ...

  3. java基本结构

    前言 Java文件的运行过程: 1,javac.exe:编译器 2,java.exe:解释器 微软shell下运行实例: C:\Users\Administrator>cd D:\文档\JAVA ...

  4. angular http interceptors 拦截器使用分享

    拦截器 在开始创建拦截器之前,一定要了解 $q和延期承诺api 出于全局错误处理,身份验证或请求的任何同步或异步预处理或响应的后处理目的,希望能够在将请求移交给服务器之前拦截请求,并在将请求移交给服务 ...

  5. provide inject应用及和props对比

    之前本人写过几篇element ui源码解析,其中提到provide/inject,当时只是匆匆带过,没有做深入研究,直到后来一次开发,需要实现孙组件更改父组件的值才想起来,原来这一对属性有如此大的用 ...

  6. React-Native中使用到的一些JS特性

    React Native - 调试技巧及调试菜单说明(模拟器调试.真机调试) https://www.hangge.com/blog/cache/detail_1480.html 1,解构赋值——de ...

  7. day 10 预科

    目录 IPO 编程 面向对象编程 类和对象 对象 类 定义类 定义对象 定义类语法 定义对象 (实例化对象) 定制对象独有特征 LeetCode检测机制 面向过程编程:面向(对着)-->过程(流 ...

  8. jmeter bodydata参数传递

    参见:接口测试, jmeter bodydata 传送的参数,在请求中显示为空 新增http header信息头:

  9. Linux环境宿主机进入Docker容器、连接数据库、复制文件

    我们默认mysql容器已经正常启动,以下为关键命令.1.docker exec -it mysql bash : 进入已经正常启动的容器bash中,mysql是指实际容器名称.2.mysql -uro ...

  10. yum升级curl支持http2测试

    首先,先为你的服务器获取最新匹配的源:http://mirror.city-fan.org/ftp/contrib/yum-repo/ 方法1,rpm方式安装city-fan.org的yum源 # 安 ...