数据预处理:mean normalization & feature scaling

先进行均值归一化(mean normalization),计算出每个特征的均值(uj),然后用xj-uj来替代,这样归一化后每个特征的均值就为0了

由于不同特征的取值范围有很大的不同(如一个为房子面积,一个为房间数目),将每个特征进行feature scaling,使特征处于同一可比较范围。如上图公式所示来进行feature scaling,Sj某个特征的取值范围或者标准差

PCA: PCA的具体实现过程的更多相关文章

  1. 机器学习笔记----四大降维方法之PCA(内带python及matlab实现)

    大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效 ...

  2. PCA and kmeans MATLAB实现

    MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和  ...

  3. [zz] Principal Components Analysis (PCA) 主成分分析

    我理解PCA应该分为2个过程:1.求出降维矩阵:2.利用得到的降维矩阵,对数据/特征做降维. 这里分成了两篇博客,来做总结. http://matlabdatamining.blogspot.com/ ...

  4. PCA人脸识别

    人脸数据来自http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 实现代码和效果如下.由于图片数量有限(40*10),将原 ...

  5. 主元分析PCA理论分析及应用

    首先,必须说明的是,这篇文章是完完全全复制百度文库当中的一篇文章.本人之前对PCA比较好奇,在看到这篇文章之后发现其对PCA的描述非常详细,因此迫不及待要跟大家分享一下,希望同样对PCA比较困惑的朋友 ...

  6. Deep Learning学习随记(二)Vectorized、PCA和Whitening

    接着上次的记,前面看了稀疏自编码.按照讲义,接下来是Vectorized, 翻译成向量化?暂且这么认为吧. Vectorized: 这节是老师教我们编程技巧了,这个向量化的意思说白了就是利用已经被优化 ...

  7. [Scikit-learn] 4.4 Dimensionality reduction - PCA

    2.5. Decomposing signals in components (matrix factorization problems) 2.5.1. Principal component an ...

  8. 【机器学习实战】第13章 利用 PCA 来简化数据

    第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实 ...

  9. 三种方法实现PCA算法(Python)

    主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...

随机推荐

  1. 小甲鱼汇编语言学习笔记——day01

    1.计算机CPU由如下三部分组成(如下图):运算器.控制器.寄存器. 2.寄存器:简单说,就是用来存储数据的器件,类似内存,不过这个是CPU专用,跟内存不一样. 8086CPU里,寄存器总共有14个, ...

  2. 选redis还是memcache,源码怎么说

    转自: https://mp.weixin.qq.com/s?__biz=MjM5ODYxMDA5OQ==&mid=2651961272&idx=1&sn=79ad515b01 ...

  3. Python中的高性能容器--collections

    集合模块 相对于 Python 中内置的称为链表.集合.字典和元组的默认容器类型来说,集合模块( collection module )提供了高性能的备选方案( alternative ). 简单地看 ...

  4. C语言环境搭建

    UNIX/Linux 上的安装 如果您使用的是 Linux 或 UNIX,请在命令行使用下面的命令来检查您的系统上是否安装了 GCC: $ gcc -v 如果您的计算机上已经安装了 GNU 编译器,则 ...

  5. 深度学习-CNN+RNN笔记

    以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...

  6. 【MySQL】各种小坑-持续更新

    中文乱码问题 在建表的时候额外执行 ALTER TABLE camera CONVERT TO CHARACTER SET utf8; 如果还是不行注意看一下precision,为2的时候容易出现?? ...

  7. 关于一致性hash,这可能是全网最形象生动最容易理解的文档,想做架构师的你来了解一下

    问题提出 一致性hash是什么?假设有4台缓存服务器N0,N1,N2,N3,现在需要存储数据OBJECT1,OBJECT2,OBJECT3,OBJECT4,OBJECT5,OBJECT5,OBJECT ...

  8. C#获取文件夹下的所有文件的方法

    目录 #基础知识 #只获取目录下一级的文件夹与文件 # 递归地输出当前运行程序所在的磁盘下的所有文件名和子目录名 正文   #基础知识 1.获得当前运行程序的路径 1 string rootPath ...

  9. 遍历切片slice,结构体struct,映射map,interface{}的属性和值

    1 前言 说明:interface{}必须是前三者类型 2 代码 /** * @Author: FB * @Description: * @File: testOutput.go * @Version ...

  10. 自学Python编程的第三天----------来自苦逼的转行人

    2019-09-14 11:09:50 学Python的第三天和写博客的第三天 本来第三天的内容前天就应该发的,但是因为有点难度,用了两天的时间去学习,按道也是昨天发, 因为中秋导致今天早上发,第三天 ...