20180520模拟赛T1——math
【问题描述】
小美有 n 个点 m 条边。
让你给每个点一个正整数编号。
每条边有两个属性,相连的两个点的编号的 GCD 和 LCM。
题目保证整张图连通。
让你构造出一个编号。
【输入格式】
从文件 math.in 中读入数据。
第一行两个正整数 n 和 m。
接下去m行每行 4 个正整数 xi,yi,gcdi,lcmi。
【输出格式】
输出到文件 math.out 中。
如果是有解:
第一行一行 YES。
第二行 n 个数字表示编号。
否则输出一行NO。
【样例】
【样例输入】
1 0
【样例输出】
YES 1
【样例输入】
2 1
1 2 1 3
【样例输出】
YES 1 3
【样例输入】
3 2
3 2 1 2
3 1 1 10
【样例输出】
YES 5 1 2
【样例输入】
2 1
1 2 3 7
【样例输出】
NO
【数据规模】
对于\(100\%\)的数据\(2\le n \le 100,n-1 \le m \le n*(n-1)/2,1\le gcdi, lcmi \le 10^6\)。
题解
这题其实就是一道暴力题,是根据\([a, b] \times (a, b) = a\times b\)。已知\(a\times b\),暴力枚举\(a\),然后把整张图dfs一遍判断其正确性即可。
不得不说:大力出奇迹!
另外,记得开long long。
题目加强版:CF 60C。
代码
#include <cctype>
#include <cstdio>
#include <cstring>
typedef long long LL;
#define int long long
#define dd c = getchar()
inline void read(int& x)
{
x = 0;
char dd;
bool f = false;
for(; !isdigit(c); dd)
if(c == '-')
x = -x;
for(; isdigit(c); dd)
x = (x<<1) + (x<<3) + (c^48);
if(f) x = -x;
}
#undef dd
inline int gcd(int __n, int __m)
{
while (__n)
{
int __t = __m % __n;
__m = __n;
__n = __t;
}
return __m;
}
const int maxn = 105;
int n, m;
int ans[maxn];
struct edge
{
LL cheng;
int t;
int ne;
int gcdd;
} e[maxn*maxn];
int first[maxn];
bool vis[maxn];
int mm;
inline void add_edge(int f, int t, LL cheng, int gcdd)
{
e[++mm].ne = first[f];
e[mm].t = t;
e[mm].cheng = cheng;
e[mm].gcdd = gcdd;
first[f] = mm;
e[++mm].ne = first[t];
e[mm].t = f;
e[mm].cheng = cheng;
e[mm].gcdd = gcdd;
first[t] = mm;
}
inline bool dfs(int n, int last)//dfs检验答案正确性
{
vis[n] = true;
for(int i = first[n]; i; i = e[i].ne)
{
int to = e[i].t;
if(to == last) continue;
if(vis[to])
{
if((ans[to]*ans[n] != e[i].cheng) || (gcd(ans[to], ans[n]) != e[i].gcdd))
return false;
}
else
{
ans[to] = e[i].cheng / ans[n];
if(gcd(ans[to], ans[n]) != e[i].gcdd)
return false;
if(!dfs(to, n))
return false;
}
}
return true;
}
inline void print()
{
puts("YES");
for(int i = 1; i <= n; ++i)
printf("%lld ", ans[i]);
}
inline void search()
{
vis[1] = true;
if(!first[1])
{
puts("NO");
return;
}
LL k = e[first[1]].cheng;
for(int i = 1; i*i <= k; ++i)//暴力枚举所有可能情况
if(!(k%i))
{
ans[1] = i;
memset(vis, 0, sizeof(vis));
if(dfs(1, 0))
{
print();
return;
}
ans[1] = k/i;
memset(vis, 0, sizeof(vis));
if(dfs(1, 0))
{
print();
return;
}
}
puts("NO");
}
signed main()
{
freopen("math.in", "r", stdin);
freopen("math.out", "w", stdout);
scanf("%lld%lld", &n, &m);
if(n == 1)
{
puts("YES\n1");
return 0;
}
for(int i = 1; i <= m; ++i)
{
int f, t, gcdd, lcmm;
read(f), read(t), read(gcdd), read(lcmm);
add_edge(f, t, (LL)(gcdd*lcmm), gcdd);
}
search();
return 0;
}
20180520模拟赛T1——math的更多相关文章
- 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...
- 20180610模拟赛T1——脱离地牢
Description 在一个神秘的国度里,年轻的王子Paris与美丽的公主Helen在一起过着幸福的生活.他们都随身带有一块带磁性的阴阳魔法石,身居地狱的魔王Satan早就想着得到这两块石头了,只要 ...
- 20180520模拟赛T3——chess
[问题描述] 小美很喜欢下象棋. 而且她特别喜欢象棋中的马. 她觉得马的跳跃方式很独特.(以日字格的方式跳跃) 小芳给了小美一张很大的棋盘,这个棋盘是一个无穷的笛卡尔坐标. 一开始\(time=0\) ...
- NOIP欢乐模拟赛 T1 解题报告
小澳的方阵 (matrix.cpp/c/pas) [题目描述] 小澳最近迷上了考古,他发现秦始皇的兵马俑布局十分有特点,热爱钻研的小澳打算在电脑上还原这个伟大的布局. 他努力钻研,发现秦始皇布置兵马俑 ...
- [模拟赛] T1 高级打字机
Description 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这种高级打字机设计一个程序,支持如下3种操作: 1.T x:在文章末尾打下一个小 ...
- 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物
T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...
- [NOIP2018校模拟赛]T1 阶乘
题目: 描述 有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值. 输入 共两行. 第一行一个正整数n. 第二行n个正整数a[i]. 输出 共 ...
- [NOIP2018校模拟赛]T1聚会 party
题目链接: 聚会 分析: 设每个点到1号点的距离为dist_{i},每个点的权值为x_{i},目标点到1号点的距离为dist,权值为x,那么对于每一次查询,我们讨论三种情况: ① 目标家庭在区间左边( ...
- 【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)
二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能 ...
随机推荐
- nginx开启gzip的方法
nginx开启gzip的方法 1.vi打开Nginx配置文件 <pre>vi /usr/local/nginx/conf/nginx.conf</pre> 2.找到如下一段,进 ...
- 哈夫曼树的构建(C语言)
哈夫曼树的构建(C语言) 算法思路: 主要包括两部分算法,一个是在数组中找到权值最小.且无父结点两个结点位置,因为只有无父结点才能继续组成树: 另一个就是根据这两个结点来修改相关结点值. 结构定义 ...
- Zookeeper connection loss leads to Flink job restart
Flink可以使用zookeeper来进行ha,而一般我们都会使用zookeeper的高级api架构curator来对zk进行通讯.在curator中引入了状态的概念,包括connected,reco ...
- 【剑指offer】孩子们的游戏(圆圈中最后剩下的数)
题目描述 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随机指 ...
- scala基础题--面向对象2
练习2:根据下图实现类.在TestCylinder类中创建Cylinder类的对象,设置圆柱的底面半径和高,并输出圆柱的体积 import scala.beans.BeanProperty objec ...
- FPGA成神之路
先占个坑,网上写的都太没有体系了,打算写一个从电路到语法,从软件使用到硬件调试,从IP核调用到时序分析的系列帖子,人就是太懒,想把自己这两年踩的坑分享一下,加油,特种兵
- C# 多维数组 交错数组的区别,即 [ , ] 与 [ ][ ]的区别 (转载)
多维数组的声明 在声明时,必须指定数组的长度,格式为 type [lenght ,lenght ,lengh, ... ] , ]; 或声明时即赋值,由系统推断长度 int [,] test1 = { ...
- thinkPHP中 query()和execute()的区别
query()执行的是查询(select)的SQL语句. execute()执行的是插入(insert)和修改(update)的SQL语句.execute()方法将返回影响的记录数. 如果在TP中使用 ...
- 使用PS打开图片的常见姿势
我们经常会使用PS对现有的图片进行编辑.所以每个人都会经历打开图片这一步骤. 下面为大家介绍一下PS打开图片的这一步的常见方式吧: 第一种:使用文件资源管理器(也就是双击我的电脑弹出来的窗口) 第二种 ...
- 转载 VUE+WebPack环境搭建 https://segmentfault.com/a/1190000010960666
一.vue有两种使用方式: 1.下载vue.js <script src="vue.js"></script> 2.使用npm npm install vu ...