需求:

  • 从零和使用mxnet实现dropout

数据集:

  • 使用load_digits()手写数字数据集

要求:

  • 使用1个掩藏层n_hidden1 = 36,激活函数为relu,损失函数为softmax交叉熵损失函数

注意:

  • drop函数的实现方法
  • 训练和测试时drop的区别

1.从零实现dropout

from sklearn import datasets
from mxnet import gluon,nd,autograd,init
from mxnet.gluon import nn,data as gdata,loss as gloss,trainer
# 加载数据集
digits = datasets.load_digits()
features,labels = nd.array(digits['data']),nd.array(digits['target'])
print(features.shape,labels.shape)
labels_onehot = nd.one_hot(labels,10)
print(labels_onehot.shape)
(1797, 64) (1797,)
(1797, 10)
class NeuroNet:
def __init__(self,n_inputs,n_hidden1,n_outputs):
hidden_layer = Layer(n_inputs,n_hidden1)
output_layer = Layer(n_hidden1,n_outputs)
self.layers = [hidden_layer,output_layer] for layer in self.layers:
for param in layer.params:
param.attach_grad() def softmax(self,x):
step1 = x.exp()
step2 = step1 / step1.sum(axis=1,keepdims=True)
return step2 def softmaxCrossEntropyLoss(self,y_pred,y):
step1 = -y * y_pred.log()
step2 = step1.sum(axis=1)
loss = step2.sum(axis=0) / len(y)
return loss def drop(self,x,drop_probability,train=True):
'''
神经元被丢弃的概率为p
'''
if train:
mask = nd.random.uniform(0,1,shape=x.shape,dtype='float32') > drop_probability
return mask * x / (1 - drop_probability)
else:
return x def forward(self,x,train=True):
for layer in self.layers[:-1]:
step1 = layer.forward(x)
step2 = self.drop(step1,0.2,train)
x = step2
output_layer = self.layers[-1]
return self.softmax(output_layer.forward(x)) def sgd(self,learning_rate,batch_size):
'''
使用随机梯度下降更新所有权重和偏置
'''
for layer in self.layers:
layer.sgd(learning_rate,batch_size) def dataIter(self,x,y,batch_size):
dataset = gdata.ArrayDataset(x,y)
return gdata.DataLoader(dataset,batch_size,shuffle=True) def fit(self,x,y,epoches,batch_size,learning_rate):
for epoch in range(epoches):
for x_batch,y_batch in self.dataIter(x,y,batch_size):
with autograd.record():
y_pred = self.forward(x_batch,train=True)
loss = self.softmaxCrossEntropyLoss(y_pred,y_batch)
loss.backward()
self.sgd(learning_rate,batch_size)
if epoch % 50 == 0:
y_pred_all = self.forward(x,train=False)
loss_all = self.softmaxCrossEntropyLoss(y_pred_all,y)
accuracy_score = self.accuracyScore(y_pred_all,y)
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss_all,accuracy_score)) def predict(self,x):
y_pred = self.forward(x)
return y_pred.argmax(axis=0) def accuracyScore(self,y_pred,y):
acc_sum = (y_pred.argmax(axis=1) == y.argmax(axis=1)).sum().asscalar()
return acc_sum / len(y) class Layer:
def __init__(self,n_inputs,n_outputs):
weight = nd.random.normal(scale=0.01,shape=(n_inputs,n_outputs))
bias = nd.zeros(shape=(n_outputs))
self.params = [weight,bias] def relu(self,x):
return nd.maximum(x,0) def forward(self,x):
step1 = nd.dot(x,self.params[0]) + self.params[1]
return self.relu(step1) def sgd(self,learning_rate,batch_size):
for param in self.params:
param[:] = param - learning_rate * param.grad / batch_size def print_params(self):
for param in self.params:
print(param)
net = NeuroNet(64,36,10)
net.fit(features,labels_onehot,epoches=500,batch_size=200,learning_rate=0.5)
epoch:50,loss:
[2.2988722]
<NDArray 1 @cpu(0)>,accuracy:0.18308291597106288
epoch:100,loss:
[1.4126126]
<NDArray 1 @cpu(0)>,accuracy:0.7395659432387313
epoch:150,loss:
[0.46316707]
<NDArray 1 @cpu(0)>,accuracy:0.9259877573734001
epoch:200,loss:
[0.24678323]
<NDArray 1 @cpu(0)>,accuracy:0.9493600445186422
epoch:250,loss:
[0.17839472]
<NDArray 1 @cpu(0)>,accuracy:0.9610461880912632
epoch:300,loss:
[0.14298467]
<NDArray 1 @cpu(0)>,accuracy:0.9688369504730105
epoch:350,loss:
[0.1198809]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:400,loss:
[0.10388324]
<NDArray 1 @cpu(0)>,accuracy:0.9782971619365609
epoch:450,loss:
[0.0917427]
<NDArray 1 @cpu(0)>,accuracy:0.9827490261547023
epoch:500,loss:
[0.08237094]
<NDArray 1 @cpu(0)>,accuracy:0.9849749582637729
print('预测结果:',net.predict(features[:10]))
print('真实结果:',labels[:10])
预测结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
真实结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>

2.使用mxnet实现dropout

n_inputs = 64
n_hiddens = 36
n_outputs = 10 # 定义模型
net = nn.Sequential()
net.add(nn.Dense(n_hiddens,activation='relu'))
net.add(nn.Dropout(rate=0.2))
net.add(nn.Dense(n_outputs)) # 初始化模型
net.initialize(init.Normal(sigma=0.01)) # 损失函数
loss = gloss.SoftmaxCrossEntropyLoss(sparse_label=False) optimizer = trainer.Trainer(net.collect_params(), 'sgd', {'learning_rate':0.5}) # 训练模型
epoches = 500
batch_size = 200 dataset = gdata.ArrayDataset(features,labels_onehot)
dataIter = gdata.DataLoader(dataset,batch_size,shuffle=True)
for epoch in range(epoches):
for x_batch,y_batch in dataIter:
with autograd.record():
y_pred = net.forward(x_batch)
l = loss(y_pred, y_batch).sum() / batch_size
l.backward()
optimizer.step(batch_size)
if epoch % 50 == 0:
y_all_pred = net.forward(features)
acc_sum = (y_all_pred.argmax(axis=1) == labels_onehot.argmax(axis=1)).sum().asscalar()
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss(y_all_pred,labels_onehot).sum() / len(labels_onehot),acc_sum/len(y_all_pred)))
epoch:50,loss:
[2.2981045]
<NDArray 1 @cpu(0)>,accuracy:0.16304952698942682
epoch:100,loss:
[0.97166663]
<NDArray 1 @cpu(0)>,accuracy:0.867557039510295
epoch:150,loss:
[0.3836201]
<NDArray 1 @cpu(0)>,accuracy:0.9243183082915971
epoch:200,loss:
[0.24329802]
<NDArray 1 @cpu(0)>,accuracy:0.9449081803005008
epoch:250,loss:
[0.18068495]
<NDArray 1 @cpu(0)>,accuracy:0.9577072899276572
epoch:300,loss:
[0.14546551]
<NDArray 1 @cpu(0)>,accuracy:0.9660545353366722
epoch:350,loss:
[0.1219953]
<NDArray 1 @cpu(0)>,accuracy:0.9727323316638843
epoch:400,loss:
[0.10563282]
<NDArray 1 @cpu(0)>,accuracy:0.9760712298274903
epoch:450,loss:
[0.09357208]
<NDArray 1 @cpu(0)>,accuracy:0.9788536449638287
epoch:500,loss:
[0.08368526]
<NDArray 1 @cpu(0)>,accuracy:0.9816360601001669

从零和使用mxnet实现dropout的更多相关文章

  1. 从零和使用mxnet实现softmax分类

    1.softmax从零实现 from mxnet.gluon import data as gdata from sklearn import datasets from mxnet import n ...

  2. 从零和使用mxnet实现线性回归

    1.线性回归从零实现 from mxnet import ndarray as nd import matplotlib.pyplot as plt import numpy as np import ...

  3. MXNET:监督学习

    线性回归 给定一个数据点集合 X 和对应的目标值 y,线性模型的目标就是找到一条使用向量 w 和位移 b 描述的线,来尽可能地近似每个样本X[i] 和 y[i]. 数学公式表示为\(\hat{y}=X ...

  4. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  5. 模型正则化,dropout

    正则化 在模型中加入正则项,防止训练过拟合,使测试集效果提升 Dropout 每次在网络中正向传播时,在每一层随机将一些神经元置零(相当于激活函数置零),一般在全连接层使用,在卷积层一般随机将整个通道 ...

  6. 深入解析Dropout——基本思想:以概率P舍弃部分神经元,其它神经元以概率q=1-p被保留,舍去的神经元的输出都被设置为零

    深度学习网络大杀器之Dropout——深入解析Dropout  转自:https://yq.aliyun.com/articles/68901 摘要: 本文详细介绍了深度学习中dropout技巧的思想 ...

  7. 【零基础】神经网络优化之dropout和梯度校验

    一.序言 dropout和L1.L2一样是一种解决过拟合的方法,梯度检验则是一种检验“反向传播”计算是否准确的方法,这里合并简单讲述,并在文末提供完整示例代码,代码中还包含了之前L2的示例,全都是在“ ...

  8. 基于MXNET框架的线性回归从零实现(房价预测为例)

    1.基于MXNET框架的线性回归从零实现例子 下面博客是基于MXNET框架下的线性回归从零实现,以一个简单的房屋价格预测作为例子来解释线性回归的基本要素.这个应用的目标是预测一栋房子的售出价格(元). ...

  9. TensorFlow使用记录 (七): BN 层及 Dropout 层的使用

    参考:tensorflow中的batch_norm以及tf.control_dependencies和tf.GraphKeys.UPDATE_OPS的探究 1. Batch Normalization ...

随机推荐

  1. [转帖]腾讯云TStack获下一代云计算技术创新奖 与鲲鹏等产品实现兼容性测试

    http://www.techweb.com.cn/cloud/2019-12-16/2769286.shtml [TechWeb]12 月 16 日消息,在中国电子技术标准化研究院主办的“第九届中国 ...

  2. SkyWalking6.2.0版本UI参数、告警参数、指标含义中文解释

    一.告警规则相关参数 二.SkyWalking UI相关参数CPM:每分钟请求调用的次数SLA: 服务等级协议(简称:SLA,全称:service level agreement).是在一定开销下为保 ...

  3. sprintboot动态静态资源转发

    背景|     要做一个功能,根据规则服务器上创建文件后,返回可下载的链接           因为sprintboot中地址需要先在用@RequestMapping定义好,否则解析不了,这时动态生成 ...

  4. Regex 常见语法

    常用元字符 . 匹配除换行符以外的任意字符. \w 匹配字母或数字或下划线或汉字.\W 匹配任意不是字母,数字,下划线,汉字的字符. \s 匹配任意的空白符.\S 匹配任意不是空白符的字符.等价于 [ ...

  5. P2995 [USACO10NOV]牛的照片(树状数组,逆序对)

    题目: P2995 [USACO10NOV]牛的照片Cow Photographs P4545 [USACO10NOV]奶牛的图片Cow Photographs SP7809 COWPIC - Cow ...

  6. Spring MVC + CXF实现webservice接口

    本来都是WebAPI/RestfulAPI接口对外提供接口的,突然有个需求要提供WebService接口,本想着Spring和CXF这么成熟的两个产品,这么的也整不出什么幺蛾子来啊. 结果还真是出了几 ...

  7. 在verilog中使用格雷码

    格雷码的一些知识: https://baike.baidu.com/item/%E6%A0%BC%E9%9B%B7%E7%A0%81/6510858?fr=aladdin 绿色框起来的是0--15的格 ...

  8. rsync免密码远程复制文件

    目标: 从云服务器(112.77.69.212)把mongodb中的文件同步到本地. 步骤一:在云服务器上创建用户 $ adduser monbak $ passwd monbak 步骤二:设置免密登 ...

  9. Linux shell case条件判断及位置变量

    case语句使用于需要进行多重分支的应用情况 case分支判断结构 语法: case 变量名称 in      value1)          statement          statemen ...

  10. mac下sourcetree创建git分支和合并分支

    git默认创建的分支为:master主分支 要实现的效果:新建和合并分支. 1.在master基础上创建分支v1.0.1并切换至v1.0.1然后推送分支到远程服务器 确定即可!! 然后查看远端已经发现 ...