从零和使用mxnet实现dropout
需求:
- 从零和使用mxnet实现dropout
数据集:
- 使用load_digits()手写数字数据集
要求:
- 使用1个掩藏层n_hidden1 = 36,激活函数为relu,损失函数为softmax交叉熵损失函数
注意:
- drop函数的实现方法
- 训练和测试时drop的区别
1.从零实现dropout
from sklearn import datasets
from mxnet import gluon,nd,autograd,init
from mxnet.gluon import nn,data as gdata,loss as gloss,trainer
# 加载数据集
digits = datasets.load_digits()
features,labels = nd.array(digits['data']),nd.array(digits['target'])
print(features.shape,labels.shape)
labels_onehot = nd.one_hot(labels,10)
print(labels_onehot.shape)
(1797, 64) (1797,)
(1797, 10)
class NeuroNet:
def __init__(self,n_inputs,n_hidden1,n_outputs):
hidden_layer = Layer(n_inputs,n_hidden1)
output_layer = Layer(n_hidden1,n_outputs)
self.layers = [hidden_layer,output_layer]
for layer in self.layers:
for param in layer.params:
param.attach_grad()
def softmax(self,x):
step1 = x.exp()
step2 = step1 / step1.sum(axis=1,keepdims=True)
return step2
def softmaxCrossEntropyLoss(self,y_pred,y):
step1 = -y * y_pred.log()
step2 = step1.sum(axis=1)
loss = step2.sum(axis=0) / len(y)
return loss
def drop(self,x,drop_probability,train=True):
'''
神经元被丢弃的概率为p
'''
if train:
mask = nd.random.uniform(0,1,shape=x.shape,dtype='float32') > drop_probability
return mask * x / (1 - drop_probability)
else:
return x
def forward(self,x,train=True):
for layer in self.layers[:-1]:
step1 = layer.forward(x)
step2 = self.drop(step1,0.2,train)
x = step2
output_layer = self.layers[-1]
return self.softmax(output_layer.forward(x))
def sgd(self,learning_rate,batch_size):
'''
使用随机梯度下降更新所有权重和偏置
'''
for layer in self.layers:
layer.sgd(learning_rate,batch_size)
def dataIter(self,x,y,batch_size):
dataset = gdata.ArrayDataset(x,y)
return gdata.DataLoader(dataset,batch_size,shuffle=True)
def fit(self,x,y,epoches,batch_size,learning_rate):
for epoch in range(epoches):
for x_batch,y_batch in self.dataIter(x,y,batch_size):
with autograd.record():
y_pred = self.forward(x_batch,train=True)
loss = self.softmaxCrossEntropyLoss(y_pred,y_batch)
loss.backward()
self.sgd(learning_rate,batch_size)
if epoch % 50 == 0:
y_pred_all = self.forward(x,train=False)
loss_all = self.softmaxCrossEntropyLoss(y_pred_all,y)
accuracy_score = self.accuracyScore(y_pred_all,y)
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss_all,accuracy_score))
def predict(self,x):
y_pred = self.forward(x)
return y_pred.argmax(axis=0)
def accuracyScore(self,y_pred,y):
acc_sum = (y_pred.argmax(axis=1) == y.argmax(axis=1)).sum().asscalar()
return acc_sum / len(y)
class Layer:
def __init__(self,n_inputs,n_outputs):
weight = nd.random.normal(scale=0.01,shape=(n_inputs,n_outputs))
bias = nd.zeros(shape=(n_outputs))
self.params = [weight,bias]
def relu(self,x):
return nd.maximum(x,0)
def forward(self,x):
step1 = nd.dot(x,self.params[0]) + self.params[1]
return self.relu(step1)
def sgd(self,learning_rate,batch_size):
for param in self.params:
param[:] = param - learning_rate * param.grad / batch_size
def print_params(self):
for param in self.params:
print(param)
net = NeuroNet(64,36,10)
net.fit(features,labels_onehot,epoches=500,batch_size=200,learning_rate=0.5)
epoch:50,loss:
[2.2988722]
<NDArray 1 @cpu(0)>,accuracy:0.18308291597106288
epoch:100,loss:
[1.4126126]
<NDArray 1 @cpu(0)>,accuracy:0.7395659432387313
epoch:150,loss:
[0.46316707]
<NDArray 1 @cpu(0)>,accuracy:0.9259877573734001
epoch:200,loss:
[0.24678323]
<NDArray 1 @cpu(0)>,accuracy:0.9493600445186422
epoch:250,loss:
[0.17839472]
<NDArray 1 @cpu(0)>,accuracy:0.9610461880912632
epoch:300,loss:
[0.14298467]
<NDArray 1 @cpu(0)>,accuracy:0.9688369504730105
epoch:350,loss:
[0.1198809]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:400,loss:
[0.10388324]
<NDArray 1 @cpu(0)>,accuracy:0.9782971619365609
epoch:450,loss:
[0.0917427]
<NDArray 1 @cpu(0)>,accuracy:0.9827490261547023
epoch:500,loss:
[0.08237094]
<NDArray 1 @cpu(0)>,accuracy:0.9849749582637729
print('预测结果:',net.predict(features[:10]))
print('真实结果:',labels[:10])
预测结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
真实结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
2.使用mxnet实现dropout
n_inputs = 64
n_hiddens = 36
n_outputs = 10
# 定义模型
net = nn.Sequential()
net.add(nn.Dense(n_hiddens,activation='relu'))
net.add(nn.Dropout(rate=0.2))
net.add(nn.Dense(n_outputs))
# 初始化模型
net.initialize(init.Normal(sigma=0.01))
# 损失函数
loss = gloss.SoftmaxCrossEntropyLoss(sparse_label=False)
optimizer = trainer.Trainer(net.collect_params(), 'sgd', {'learning_rate':0.5})
# 训练模型
epoches = 500
batch_size = 200
dataset = gdata.ArrayDataset(features,labels_onehot)
dataIter = gdata.DataLoader(dataset,batch_size,shuffle=True)
for epoch in range(epoches):
for x_batch,y_batch in dataIter:
with autograd.record():
y_pred = net.forward(x_batch)
l = loss(y_pred, y_batch).sum() / batch_size
l.backward()
optimizer.step(batch_size)
if epoch % 50 == 0:
y_all_pred = net.forward(features)
acc_sum = (y_all_pred.argmax(axis=1) == labels_onehot.argmax(axis=1)).sum().asscalar()
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss(y_all_pred,labels_onehot).sum() / len(labels_onehot),acc_sum/len(y_all_pred)))
epoch:50,loss:
[2.2981045]
<NDArray 1 @cpu(0)>,accuracy:0.16304952698942682
epoch:100,loss:
[0.97166663]
<NDArray 1 @cpu(0)>,accuracy:0.867557039510295
epoch:150,loss:
[0.3836201]
<NDArray 1 @cpu(0)>,accuracy:0.9243183082915971
epoch:200,loss:
[0.24329802]
<NDArray 1 @cpu(0)>,accuracy:0.9449081803005008
epoch:250,loss:
[0.18068495]
<NDArray 1 @cpu(0)>,accuracy:0.9577072899276572
epoch:300,loss:
[0.14546551]
<NDArray 1 @cpu(0)>,accuracy:0.9660545353366722
epoch:350,loss:
[0.1219953]
<NDArray 1 @cpu(0)>,accuracy:0.9727323316638843
epoch:400,loss:
[0.10563282]
<NDArray 1 @cpu(0)>,accuracy:0.9760712298274903
epoch:450,loss:
[0.09357208]
<NDArray 1 @cpu(0)>,accuracy:0.9788536449638287
epoch:500,loss:
[0.08368526]
<NDArray 1 @cpu(0)>,accuracy:0.9816360601001669
从零和使用mxnet实现dropout的更多相关文章
- 从零和使用mxnet实现softmax分类
1.softmax从零实现 from mxnet.gluon import data as gdata from sklearn import datasets from mxnet import n ...
- 从零和使用mxnet实现线性回归
1.线性回归从零实现 from mxnet import ndarray as nd import matplotlib.pyplot as plt import numpy as np import ...
- MXNET:监督学习
线性回归 给定一个数据点集合 X 和对应的目标值 y,线性模型的目标就是找到一条使用向量 w 和位移 b 描述的线,来尽可能地近似每个样本X[i] 和 y[i]. 数学公式表示为\(\hat{y}=X ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- 模型正则化,dropout
正则化 在模型中加入正则项,防止训练过拟合,使测试集效果提升 Dropout 每次在网络中正向传播时,在每一层随机将一些神经元置零(相当于激活函数置零),一般在全连接层使用,在卷积层一般随机将整个通道 ...
- 深入解析Dropout——基本思想:以概率P舍弃部分神经元,其它神经元以概率q=1-p被保留,舍去的神经元的输出都被设置为零
深度学习网络大杀器之Dropout——深入解析Dropout 转自:https://yq.aliyun.com/articles/68901 摘要: 本文详细介绍了深度学习中dropout技巧的思想 ...
- 【零基础】神经网络优化之dropout和梯度校验
一.序言 dropout和L1.L2一样是一种解决过拟合的方法,梯度检验则是一种检验“反向传播”计算是否准确的方法,这里合并简单讲述,并在文末提供完整示例代码,代码中还包含了之前L2的示例,全都是在“ ...
- 基于MXNET框架的线性回归从零实现(房价预测为例)
1.基于MXNET框架的线性回归从零实现例子 下面博客是基于MXNET框架下的线性回归从零实现,以一个简单的房屋价格预测作为例子来解释线性回归的基本要素.这个应用的目标是预测一栋房子的售出价格(元). ...
- TensorFlow使用记录 (七): BN 层及 Dropout 层的使用
参考:tensorflow中的batch_norm以及tf.control_dependencies和tf.GraphKeys.UPDATE_OPS的探究 1. Batch Normalization ...
随机推荐
- ElasticSearch如何更新集群的状态
ElasticSearch如何更新集群的状态 最近发生了很多事情,甚至对自己的技术能力和学习方式产生了怀疑,所以有一段时间没更新文章了,估计以后更新的频率会越来越少,希望有更多的沉淀而不是简单地分享. ...
- 【杂文】NOIP2018 蒟蒻自闭记
[杂文]NOIP2018 蒟蒻自闭记 都 \(9102\) 年了,谁还记得 \(2018\) 年的事啊 \(QAQ\) . 还有两个月就要去参加首届 \(CSP\) 了. 想着如果再不记下去年那些事儿 ...
- WPF 精修篇 BackgroundWorker
原文:WPF 精修篇 BackgroundWorker 效果 <Grid> <Grid.RowDefinitions> <RowDefinition Height=&qu ...
- .NetCore使用NLog写入数据库总结
考虑到项目后期添加日志的需求,抽个闲暇时间学习一下使用NLog插件将日志信息写入到数据库中,完整项目见下面: 遇到的问题: 使用NLog写到SQLServer里面的中文显示问号? 解决方法:调整数据库 ...
- 关于 Visual Studio 2017 ,或2019 ,Installer 没检测到已安装的程序.以及C++ 创建项目失败
解决方法: 首先, 把 本机 的Installer.exe 卸载了. 2 , 重新下载 Installer.exe 打开后发现 ,又重新检测到 VS 2019 ,或2017了
- Java 实现生产者 – 消费者模型
转自:http://www.importnew.com/27063.html 考查Java的并发编程时,手写“生产者-消费者模型”是一个经典问题.有如下几个考点: 对Java并发模型的理解 对Java ...
- P2995 [USACO10NOV]牛的照片(树状数组,逆序对)
题目: P2995 [USACO10NOV]牛的照片Cow Photographs P4545 [USACO10NOV]奶牛的图片Cow Photographs SP7809 COWPIC - Cow ...
- vim操作:打开多个文件、同时显示多个文件、在文件之间切换
打开多个文件: 1.vim还没有启动的时候: 在终端里输入 vim file1 file2 ... filen 便可以打开所有想要打开的文件 2.vim已经启动 输入 :open file 可以再打开 ...
- js中面向对象(创建对象的几种方式)
1.面向对象编程(OOP)的特点: 抽象:抓住核心问题 封装:只能通过对象来访问方法 继承:从已有的对象下继承出新的对象 多态:多对象的不同形态 注:本文引用于 http://www.cnblogs. ...
- MySql数据库 timeout超时报警的解决方法
今天做查询mysql数据库是,因为数据量大所以报错 最后在 连接的地方做了如下改动: MySqlCommand cmd = new MySqlCommand(procedureName, conn); ...