svm 是针对二分类问题, 如果要进行多分类, 无非就是多训练几个svm呗

OVR (one versus rest)

对于k个类别(k>2) 的情况, 训练k个svm, 其中, 第j个svm用于判断任意条数据是是属于类别j还是非类别j.

预测的时候, 具有最大值的 \(w_i^Tx + bi\) 表示该样本属于类别i.

假设样本有 3个类别, A, B, C, 则需要训练3个svm, 记为s1, s2, s3

然后输出一个样本x, 都要经过 s1, s2, s3, 则为 max(s1(x), s2(x), s3(x)) 该类别

OVO (one versus one)

针对k个类别, 进行两两组合, 训练 k* (k-1) / 2 个svm, 每个svm 只用于判断样本是属于k中特定的两个类别.

预测的时候, 用 k * (k-1) / 2 个svm 做 K * (k-1) / 2 次预测, 用投票 的方式决定该样本是属于那个类别.

同样假设样本有3个类别 A, B, C, 则需训练 3 * (3-1) / 2 = 3 个支持向量机, 分别是SAB, SAC, SBC

然后输入一个样本x, 做3测预测,(AB, AC, BC) , 假设结果分别是: B, A, B 则最终为B类别

SVM 小结

特点

  • 专注于找最优的分界线 (margin), 用于减少过拟合 (异常值不敏感, 只考虑支持向量)
  • Kernel trick 的应用使得 SVM 能高效处理线性不可分的场景

优势

  • 理论非常完美

    • 凸优化及对偶(KKT)
    • Max Margin
    • SVM 目标函数
    • SVM 对偶形式(lagrange)
    • Slack SVM
    • Kernel SVM
    • 求解SVM 的SMO 算法
  • 支持不同的Kernel 函数

劣势

  • 当数量特别大的时候, 训练较慢

总体而言, 正如jerry大佬常谈的, 这种凸优化(对偶) , 核函数 这样的技术, 不仅仅只是用于SVM , 很多地方也都可以的呀. 我感觉SVM, 这算是我真正学到了一点, 硬核技术了.

SVM 实现多分类思路的更多相关文章

  1. 8.SVM用于多分类

    从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳 ...

  2. SVM实现邮件分类

    首先学习一下svm分类的使用. 主要有以下步骤: Loading and Visualizing Dataj Training Linear SVM Implementing Gaussian Ker ...

  3. SVM实现多分类的三种方案

    SVM本身是一个二值分类器 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类 (1)直接法,直接在目标函数上进行修改,将 ...

  4. SVM处理多分类问题(one-versus-rest和one-versus-one的不同)

    SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一 ...

  5. tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)

    iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This f ...

  6. 【机器学习具体解释】SVM解二分类,多分类,及后验概率输出

    转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台 支持向量机(Support Vecto ...

  7. Python-基于向量机SVM的文本分类

    项目代码见 Github: 1.算法介绍 2.代码所用数据 详情参见http://qwone.com/~jason/20Newsgroups/ 文件结构 ├─doc_classification.py ...

  8. SVM处理多分类问题

    "one-against-one" approach from sklearn import svm X = [[0], [1], [2], [3]] Y = [0, 1, 2, ...

  9. Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子

    转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及 ...

随机推荐

  1. 异常CLRDBG_NOTIFICATION_EXCEPTION_CODE( 0x04242420)

    简介 CLRDBG_NOTIFICATION_EXCEPTION_CODE,值为0x0x04242420.此异常在.CLR 4.0的启动路径期间触发,是CLR4.0版本初始化调试服务时向调试器发送消息 ...

  2. spark基础知识四

    围绕spark的其他特性和应用.主要包括以下几个方面 spark自定义分区 spark中的共享变量 spark程序的序列化问题 spark中的application/job/stage/task之间的 ...

  3. nuxtjs如何部署cdn及区分发布环境

    1.部署cdn nuxt  build 后的前端资源都会存放在.nuxt/dist/ 文件夹下面 img 目录存放的是使用到的图片资源,无论是开发中存放在 assets 文件夹里的,还是static里 ...

  4. 获取当前页面url指定参数值

    function getParam(paramName) { paramValue = "", isFound = !1; if (this.location.search.ind ...

  5. app内嵌h5分享到小程序分享功能

    if (this.GLOBAL.env !== 'production') { try { window.JSBridge.shareMiniProgramToWx('https://www.lexi ...

  6. 设计模式主目录 C++实现

    行为性模式 1.观察者模式 结构型模式    ----  组合的艺术 1.外观模式

  7. 关于“100g文件全是数组,取最大的100个数”解决方法汇总

    原题如下: 有一个100G大小的文件里存的全是数字,并且每个数字见用逗号隔开.现在在这一大堆数字中找出100个最大的数出来. 我认为,首先要摸清考官的意图.是想问你os方面的知识,还是算法,或者数据结 ...

  8. Python(三)对装饰器的理解

    装饰器是 Python 的一个重要部分,也是比较难理解和使用好的部分.下面对装饰器做一下简单整理 1. 前言 装饰器实际上是应用了设计模式里,装饰器模式的思想: 在不概念原有结构的情况下,添加新的功能 ...

  9. ASP.NET Core使用Docker-Swarm集群部署实现负载均衡实战演练

    一.需求背景 人生苦短,我用.NET Core!阿笨对Docker是这样评价的:Docker在手,环境我有!Docker出手,集群我有!前面的Doc基础课程我们学习了如何使用Docker来部署搭建单机 ...

  10. SVN版本管理系统使用教程

    1.下载SVN安装包 https://tortoisesvn.net/downloads.html 2.下载SVN汉化包 网页下翻到下载处 3.下载服务端 https://www.visualsvn. ...