P4211 [LNOI2014]LCA LCT
P4211 [LNOI2014]LCA
链接
思路
多次询问\(\sum\limits_{l \leq i \leq r}dep[LCA(i,z)]\)
可以转化成l到r上的点到根的路径+1
最后求一下1到z的路径和就是所求
区间\([l,r]\)是可以差分的
离线直接求就行了。
树剖常数小,但还是比LCT多个log
我的LCT好慢啊
代码
#include <bits/stdc++.h>
#define ls c[x][0]
#define rs c[x][1]
using namespace std;
const int N = 1e5 + 7, mod = 201314;
int read() {
int x = 0, f = 1; char s = getchar();
for (;s > '9' || s < '0'; s = getchar()) if (s == '-') f = -1;
for (;s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int f[N], c[N][2], w[N], siz[N], sum[N], stak[N], lazy[N], lazytwo[N];
bool isroot(int x) {return c[f[x]][0] == x || c[f[x]][1] == x;}
void tag(int x){swap(ls,rs), lazy[x] ^= 1;}
void tagtwo(int x, int val) {
sum[x] = (sum[x] + 1LL * val * siz[x] % mod) % mod;
w[x] = (w[x] + val) % mod;
lazytwo[x] = (lazytwo[x] + val) % mod;
}
void pushdown(int x) {
if (lazy[x]) {
if (ls) tag(ls);
if (rs) tag(rs);
lazy[x] ^= 1;
}
if (lazytwo[x]) {
if (ls) tagtwo(ls, lazytwo[x]);
if (rs) tagtwo(rs, lazytwo[x]);
lazytwo[x] = 0;
}
}
void pushup(int x) {
sum[x] = (sum[ls] + sum[rs] + w[x]) % mod;
siz[x] = siz[ls] + siz[rs] + 1;
}
void rotate(int x) {
int y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if (isroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y;
c[y][k] = w;
if (w) f[w] = y;
f[x] = z;
f[y] = x;
pushup(y);
}
void splay(int x) {
int y = x, z = 0;
stak[++z] = y;
while (isroot(y)) stak[++z] = y = f[y];
while (z) pushdown(stak[z--]);
while (isroot(x)) {
y = f[x], z = f[y];
if (isroot(y)) rotate((c[y][0] == x)^(c[z][0] == y) ? x : y);
rotate(x);
}
pushup(x);
}
void access(int x) {
for (int y = 0; x;x = f[y = x])
splay(x), rs = y, pushup(x);
}
void makeroot(int x) {
access(x), splay(x);
tag(x);
}
int findroot(int x) {
access(x), splay(x);
while(ls) pushdown(x), x = ls;
return x;
}
void split(int x, int y) {
makeroot(x), access(y), splay(y);
}
void link(int x, int y) {
makeroot(x);
if (findroot(y) != x) f[x] = y;
}
void cut(int x, int y) {
makeroot(x);
if (findroot(y) == x && f[x] == y && !rs) {
f[x] = c[y][0] = 0;
pushup(y);
}
}
struct node {
int id, l, z, ans;
node(int a = 0, int b = 0, int c = 0) {
id = a, l = b, z = c;
}
} Q[N];
bool cmp1(const node &a, const node& b) {
return a.l < b.l;
}
bool cmp2(const node &a, const node& b) {
return a.id < b.id;
}
int main() {
// freopen("a.in", "r", stdin);
int n = read(), m = read();
for (int i = 2; i <= n; ++i) {
int x = read() + 1;
link(i, x);
}
for (int i = 1; i <= m; ++i) {
int l = read() + 1, r = read() + 1, z = read() + 1;
Q[i * 2 - 1] = node(i * 2 - 1, l - 1, z);
Q[i * 2] = node(i * 2, r, z);
}
m <<= 1;
sort(Q + 1, Q + 1 + m, cmp1);
int js = 1;
for (int i = 0; i <= n; ++i) {
if (i) split(1, i),tagtwo(i, 1);
while(Q[js].l == i) {
split(1, Q[js].z);
Q[js].ans = sum[Q[js].z];
js++;
}
}
sort(Q + 1, Q + 1 + m, cmp2);
for (int i = 2; i <= m; i += 2) {
int ans = Q[i].ans - Q[i - 1].ans;
ans = (ans % mod + mod) % mod;
printf("%d\n", ans);
}
return 0;
}
P4211 [LNOI2014]LCA LCT的更多相关文章
- P4211 [LNOI2014]LCA
P4211 [LNOI2014]LCA 链接 分析: 首先一种比较有趣的转化是,将所有点到1的路径上都+1,然后z到1的路径上的和,就是所有答案的deep的和. 对于多次询问,要么考虑有把询问离线,省 ...
- 洛谷 P4211 [LNOI2014]LCA 解题报告
[LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...
- 洛谷 P4211 [LNOI2014]LCA (树链剖分+离线)
题目:https://www.luogu.org/problemnew/solution/P4211 相当难的一道题,其思想难以用言语表达透彻. 对于每个查询,区间[L,R]中的每个点与z的lca肯定 ...
- Luogu P4211 [LNOI2014]LCA
我去这道题的Luogu评级是假的吧,这都算黑题. 我们首先考虑把操作离线不强制在线的题目离线一下一般都要方便些 考虑差分,我们用\(f(x)\)表示\([1,x]\)之间的点与\(z\)的答案,那么显 ...
- 并不对劲的bzoj3626:loj2558:p4211:[LNOI2014]LCA
题目大意 有一棵有\(n\)(\(n\leq5*10^4\))个点的树,\(q\)(\(q\leq5*10^4\))次询问,每次给出\(l,r,x\)表示询问所有编号在\([l,r]\)的点与点\(x ...
- 洛谷$P4211\ [LNOI2014]\ LCA$ 树链剖分+线段树
正解:树剖+线段树 解题报告: 传送门$QwQ$ 看到$dep[lca]$啥的就想到之前托腮腮$CSP$模拟$D1T3$的那个套路,,, 然后试下这个想法,于是$dep[lca(x,y)]=\sum_ ...
- [火星补锅] 非确定性有穷状态决策自动机练习题Vol.3 T3 && luogu P4211 [LNOI2014]LCA 题解
前言: 这题感觉还是很有意思.离线思路很奇妙.可能和二次离线有那么一点点相似?当然我不会二次离线我就不云了. 解析: 题目十分清真. 求一段连续区间内的所有点和某个给出的点的Lca的深度和. 首先可以 ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
随机推荐
- 关于使用mySqlSugar插入数据异常解决方案
项目的解决方案中引用的有mysqlsugar的数据库操作库,在使用插入数据过程中一些特殊的生僻字或表情符号总会提示: Incorrect string value: '\xF0\x9F...' for ...
- Vertx与Spring配合完成DML操作
服务启动: public static void main( String[] args ) { ApplicationContext context = new AnnotationConfigAp ...
- Python基础之shutil模块、random模块
1.shutil模块 shutil模块是对os模块的功能补充,包含移动.复制.打包.压缩.解压等功能. 1)shutil.copyfileobj() 复制文件内容到另一个文件,可指定大小内容,如len ...
- 2019 263云通信java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.263云通信等公司offer,岗位是Java后端开发,因为发展原因最终选择去了263云通信,入职一年时间了,也 ...
- gulp与webpack的区别?是一种工具吗?
问:gulp和webpack什么关系,是一种东西吗?可以只用gulp,不用webpack吗 或者反过来?有什么区别? 答:gulp是工具链.自动化构建工具,可以配合各种插件,我们不用再做机械重复的工作 ...
- 英语catarinite天铁托甲catarinite镍铁陨石
中文名称:天铁 镍铁陨石(catarinite)是铁质陨石的一种,发现地有南非,美国,澳洲,南极大陆等.镍铁陨石有著美丽的韦德曼交纹及高含量的镍成分,因此不易氧化,大部分都用来制造饰品或展现陨石韦德曼 ...
- 手写神经网络Python深度学习
import numpy import scipy.special import matplotlib.pyplot as plt import scipy.misc import glob impo ...
- scratch2.0的教材视频,王木头系列
在线视频 http://v.qq.com/vplus/d05a62f676f6f3b6b87401b4530cff9a?page=cover 理论辩证 https://www.sohu.com/a/1 ...
- 图论篇2——最小生成树算法(kurskal算法&prim算法)
基本概念 树(Tree) 如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree) 无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树. 生成 ...
- spring Cloud Feign作为HTTP客户端调用远程HTTP服务
在Spring Cloud Netflix栈中,各个微服务都是以HTTP接口的形式暴露自身服务的,因此在调用远程服务时就必须使用HTTP客户端.我们可以使用JDK原生的URLConnection.Ap ...