caffe源代码分析--softmax_layer.cpp

// Copyright 2013 Yangqing Jia
//
#include <algorithm>
#include <vector> #include "caffe/layer.hpp"
#include "caffe/vision_layers.hpp"
#include "caffe/util/math_functions.hpp" using std::max; namespace caffe { /**
* 建立softmax网络层
*/
template <typename Dtype>
void SoftmaxLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
CHECK_EQ(bottom.size(), 1) << "Softmax Layer takes a single blob as input.";
CHECK_EQ(top->size(), 1) << "Softmax Layer takes a single blob as output.";
//输出分配空间
(*top)[0]->Reshape(bottom[0]->num(), bottom[0]->channels(),
bottom[0]->height(), bottom[0]->width());
//sum_multiplier_这里都是1,用于辅助计算,能够看作一个行向量。或者行数为1的矩阵
sum_multiplier_.Reshape(1, bottom[0]->channels(),
bottom[0]->height(), bottom[0]->width());
Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data();
for (int i = 0; i < sum_multiplier_.count(); ++i) {
multiplier_data[i] = 1.;
}
//暂时变量scale_分配空间。大小为num,能够看作一个列向量
scale_.Reshape(bottom[0]->num(), 1, 1, 1);
} template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = (*top)[0]->mutable_cpu_data();
Dtype* scale_data = scale_.mutable_cpu_data();
//把输出看成是num层,每层dim个元素
int num = bottom[0]->num();
int dim = bottom[0]->count() / bottom[0]->num();
memcpy(top_data, bottom_data, sizeof(Dtype) * bottom[0]->count());
// we need to subtract the max to avoid numerical issues, compute the exp,
// and then normalize.
//找出每一层的最大值
for (int i = 0; i < num; ++i) {
scale_data[i] = bottom_data[i*dim];
for (int j = 0; j < dim; ++j) {
scale_data[i] = max(scale_data[i], bottom_data[i * dim + j]);
}
}
// subtraction 通过矩阵相乘的方式来计算,有num层的top_data,每层元素减去该层的最大值。太巧妙了
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
scale_data, sum_multiplier_.cpu_data(), 1., top_data);
// C = alpha*op( A )*op( B ) + beta*C // Perform exponentiation 计算自然对数
caffe_exp<Dtype>(num * dim, top_data, top_data);
// sum after exp 每一层各自求和放到scale_data中
caffe_cpu_gemv<Dtype>(CblasNoTrans, num, dim, 1., top_data,
sum_multiplier_.cpu_data(), 0., scale_data);
// Do division 每一层各自除以该层的和
for (int i = 0; i < num; ++i) {
caffe_scal<Dtype>(dim, Dtype(1.) / scale_data[i], top_data + i * dim);
}
} template <typename Dtype>
Dtype SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const bool propagate_down,
vector<Blob<Dtype>*>* bottom) {
const Dtype* top_diff = top[0]->cpu_diff();
const Dtype* top_data = top[0]->cpu_data();
Dtype* bottom_diff = (*bottom)[0]->mutable_cpu_diff();
Dtype* scale_data = scale_.mutable_cpu_data();
int num = top[0]->num();
int dim = top[0]->count() / top[0]->num();
memcpy(bottom_diff, top_diff, sizeof(Dtype) * top[0]->count());
// Compute inner1d(top_diff, top_data) and subtract them from the bottom diff
for (int i = 0; i < num; ++i) {
scale_data[i] = caffe_cpu_dot<Dtype>(dim, top_diff + i * dim,
top_data + i * dim);//每一层,top_diff和top_data计算内积
}
// subtraction 每一层bottom_diff的元素减去该层的相应的内积
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, dim, 1, -1.,
scale_data, sum_multiplier_.cpu_data(), 1., bottom_diff);
// elementwise multiplication 元素各自相乘
caffe_mul<Dtype>(top[0]->count(), bottom_diff, top_data, bottom_diff);
return Dtype(0);
} INSTANTIATE_CLASS(SoftmaxLayer); } // namespace caffe

本文作者:linger

本文链接:http://blog.csdn.net/lingerlanlan/article/details/32700431

caffe源代码分析--softmax_layer.cpp的更多相关文章

  1. caffe源代码分析--data_layer.cpp

    dataLayer作为整个网络的输入层, 数据从leveldb中取. leveldb的数据是通过图片转换过来的. 网络建立的时候. datalayer主要是负责设置一些參数,比方batchsize.c ...

  2. caffe源代码分析--Blob类代码研究

    作者:linger 转自须注明转自:http://blog.csdn.net/lingerlanlan/article/details/24379689 数据成员 shared_ptr<Sync ...

  3. caffe源代码分析--math_functions.cu代码研究

    当中用到一个宏定义CUDA_KERNEL_LOOP 在common.hpp中有. #defineCUDA_KERNEL_LOOP(i,n) \ for(inti = blockIdx.x * bloc ...

  4. Caffe源代码中Solver文件分析

    Caffe源代码(caffe version commit: 09868ac , date: 2015.08.15)中有一些重要的头文件,这里介绍下include/caffe/solver.hpp文件 ...

  5. 转:SDL2源代码分析

    1:初始化(SDL_Init()) SDL简介 有关SDL的简介在<最简单的视音频播放示例7:SDL2播放RGB/YUV>以及<最简单的视音频播放示例9:SDL2播放PCM>中 ...

  6. 转:ffdshow 源代码分析

    ffdshow神奇的功能:视频播放时显示运动矢量和QP FFDShow可以称得上是全能的解码.编码器.最初FFDShow只是mpeg视频解码器,不过现在他能做到的远不止于此.它能够解码的视频格式已经远 ...

  7. Android系统进程Zygote启动过程的源代码分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6768304 在Android系统中,所有的应用 ...

  8. Android系统默认Home应用程序(Launcher)的启动过程源代码分析

    在前面一篇文章中,我们分析了Android系统在启动时安装应用程序的过程,这些应用程序安装好之后,还需要有一个 Home应用程序来负责把它们在桌面上展示出来,在Android系统中,这个默认的Home ...

  9. Android应用程序安装过程源代码分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6766010 Android系统在启动的过程中, ...

随机推荐

  1. 卸载Mysql connect 6.9.9

    我们在卸载MySQL的时候,会发现有一个名为“Connector Net X.X.X”(如:Connector Net 6.9.9)软件总是卸载不成功,下面我们来看看解决方法:1. 在C盘的目录下,有 ...

  2. 新人浅谈__(数据库的设计__数据库模型图,数据库E-R图,三大范式)

    >>>>  为什么需要规范的数据库设计 在实际的项目开发中,如果系统的数据存储量较大,设计的表比较多,表和表之间的关系比较复杂,就需要首先考虑规范的数据库设计,然后进行创建库, ...

  3. iOS动画——DynamicAnimate

    力学动画 以dynamicAnimate为首的力学动画是苹果在iOS7加入的API,里面包含了很多力学行为,这套API是基于Box2d实现的.其中包含了重力.碰撞.推.甩.和自定义行为. 涉及到的类如 ...

  4. 线性回归的Cost function实现

    此处使用Octave来实现 线性方程的代价函数: 代价函数: X 是测试值,假设用矩阵表示为         为了方便用矩阵计算我们把X加一列 1 :                 同时  那么h( ...

  5. Win32基础知识整理

    1.定义字符串 在资源新建String table,增加新字符串: (win32加载) TCHAR tcIDName[255]=_T(""); LoadString(hInstan ...

  6. [Windows Server 2008] 安装Apache+PHP+MySQL

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:Win2008 ...

  7. 行动起来:转换传统桌面应用程序到UWP 并发布到Windows 应用商店!

    一个月前微软发布了桌面应用程序转换器(Desktop Application Converter),让我们可以把现有的桌面应用程序(.NET 4.6.1 或 Win32)轻松转换成 通用 Window ...

  8. iOS crash log 解析 symbol address = stack address - slide 运行时获取slide的api 利用dwarfdump从dsym文件中得到symbol

    概述: 为什么 crash log 内 Exception Backtrace 部分的地址(stack address)不能从 dsym 文件中查出对应的代码? 因为 ASLR(Address spa ...

  9. CAD直接打印,不出现打印对话框(com接口VB语言)

    主要用到函数说明: MxDrawXCustomFunction::Mx_Print 直接打印,不出现打印对话框,详细说明如下: 参数 说明 double ptLBx 打印的范围左下角x double ...

  10. Django - 一对多创建

    1.新创建一个app python manage.py startapp app01 2.在django的setting.py中,填加新增的app名称 3.在app01的models.py中,添加代码 ...