Description

In the deep universe, there is a beautiful planet named as CS on which scientists have decided to build Immense Colossal Particle Collider (i.e. ICPC) to find the ultimate theory of the universe. The ICPC is made up with several fragments, and each fragment
has a series of energy level. Any continuous sub-series of energy level corresponds to one type of microscopic particle and can accelerate it with a remarkable effect. Scientists have found that the observation of the certain type of particle is remarkable
enough if its corresponding energy level sub-series appears in more than one half fragments. Another thing, the reverse of one specific sub-series of energy level corresponds to the antiparticle of the particle corresponded by its original sub-series. As we
all know, when a particle meets its antiparticle, DUANG DUANG, a very remarkable phenomenon can be observed by scientists. For simplicity, scientists have declared that it is not remarkable enough until the total count of the appearance in the different fragments
of the original sub-series and its reverse is more than one half the number of fragments. Lastly, both in the first and the second condition, the longer the sub-series is, the more remarkable observation can be get.

Well, so long a paragraph, science is really complicated. Now, questions come: given a set of fragments with a series of energy level, find the sub-series which can get the most remarkable observation.

Input

There are several cases. Every case comes a line with a positive integer N (N <= 10) first of all, followed by N lines each of which contains a nonempty series of capital letters representing energy levels. All series have a length not more than 1000.

Output

For every case, output the wanted sub-series. If there are more than one, output them in the alphabetical order, each in one line. If there is none, output NONE. Note that whenever one sub-series and its reverse appear simultaneously with the satisfied condition,
it is available to output only the less one in alphabetical order of them two even if any of them two appears more than one half N times.

Sample Input

3
ABC
ABD
BCD
3
AAA
BBB
CCC
2
ABC
DBA

Sample Output

AB
BC
NONE
AB

HINT

Source



题意:
要求全部正向或者反向出如今超过k/2个串中的子串

思路:
还是和曾经一样二分答案。使用二进制来标记状态

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std; #define LS 2*i
#define RS 2*i+1
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1000005
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define EXP 1e-8
int wa[N],wb[N],wsf[N],wv[N],sa[N];
int rank1[N],height[N],s[N],a[N];
//sa:字典序中排第i位的起始位置在str中第sa[i]
//rank:就是str第i个位置的后缀是在字典序排第几
//height:字典序排i和i-1的后缀的最长公共前缀
int cmp(int *r,int a,int b,int k)
{
return r[a]==r[b]&&r[a+k]==r[b+k];
}
void getsa(int *r,int *sa,int n,int m)//n要包括末尾加入的0
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=0; i<m; i++) wsf[i]=0;
for(i=0; i<n; i++) wsf[x[i]=r[i]]++;
for(i=1; i<m; i++) wsf[i]+=wsf[i-1];
for(i=n-1; i>=0; i--) sa[--wsf[x[i]]]=i;
p=1;
j=1;
for(; p<n; j*=2,m=p)
{
for(p=0,i=n-j; i<n; i++) y[p++]=i;
for(i=0; i<n; i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0; i<n; i++) wv[i]=x[y[i]];
for(i=0; i<m; i++) wsf[i]=0;
for(i=0; i<n; i++) wsf[wv[i]]++;
for(i=1; i<m; i++) wsf[i]+=wsf[i-1];
for(i=n-1; i>=0; i--) sa[--wsf[wv[i]]]=y[i];
t=x;
x=y;
y=t;
x[sa[0]]=0;
for(p=1,i=1; i<n; i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)? p-1:p++;
}
}
void getheight(int *r,int n)//n不保存最后的0
{
int i,j,k=0;
for(i=1; i<=n; i++) rank1[sa[i]]=i;
for(i=0; i<n; i++)
{
if(k)
k--;
else
k=0;
j=sa[rank1[i]-1];
while(r[i+k]==r[j+k])
k++;
height[rank1[i]]=k;
}
} char str[N];
int id[N];
map<string,int> mat,ans;
map<string,int>::iterator it; int check(int x)//统计该状态包括几个串
{
int i,cnt = 0;
for(i = 1; i<=10; i++)
if((1<<i)&x)
cnt++;
return cnt;
} int main()
{
int n,i,j,k,len;
while(~scanf("%d",&k))
{
MEM(id,0);
n = 0;
int p = 200;
for(i = 1; i<=k; i++)
{
scanf("%s",str);
len = strlen(str);
for(j = 0; j<len; j++)
{
id[n] = i;
s[n++] = str[j];
}
s[n++] = p++;
for(j = len-1; j>=0; j--)
s[n++] = str[j];
s[n++] = p++;
}
if(k == 1)
{
printf("%s\n",str);
continue;
}
getsa(s,sa,n,p);
getheight(s,n);
int l = 1,r = 1000;
ans.clear();
while(l<=r)
{
int mid = (l+r)/2;
i = 0;
mat.clear();
while(i<n)
{
if(height[i]>=mid)
{
int tem = 1<<id[sa[i-1]];
len = 2000;
while(height[i]>=mid && i<n)//二进制记录串
{
tem |= (1<<id[sa[i]]);
len = min(len,height[i]);
i++;
}
if(tem!=1)
{
char s1[1005],s2[1005];
for(j = len-1; j>=0; j--)
{
s1[len-1-j] = s[sa[i-1]+j];
s2[j] = s[sa[i-1]+j];
}
s1[len] = s2[len] = '\0';
if(mat.find(string(s1)) != mat.end())
mat[string(s1)] |= tem;
else
mat[string(s2)] = tem;
}
}
i++;
}
int flag = 0;
for(it = mat.begin(); it!=mat.end(); it++)
{
if(check(it->second) >= k/2+1)
{
if(flag==0)
{
ans.clear();
flag = 1;
}
ans.insert(*it);
}
}
if(flag==0) r = mid-1;
else l = mid+1;
}
if(ans.size()==0)
printf("NONE\n");
else
{
for(it = ans.begin(); it!=ans.end(); it++)
{
printf("%s\n",it->first.c_str());
}
}
} return 0;
}

CSU1608: Particle Collider(后缀数组)的更多相关文章

  1. 后缀数组的倍增算法(Prefix Doubling)

    后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...

  2. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  3. BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]

    1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][St ...

  4. POJ3693 Maximum repetition substring [后缀数组 ST表]

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9458   Acc ...

  5. POJ1743 Musical Theme [后缀数组]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  6. 后缀数组(suffix array)详解

    写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...

  7. 【UOJ #35】后缀排序 后缀数组模板

    http://uoj.ac/problem/35 以前做后缀数组的题直接粘模板...现在重新写一下模板 注意用来基数排序的数组一定要开到N. #include<cstdio> #inclu ...

  8. 【BZOJ-2119】股市的预测 后缀数组

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 334  Solved: 154[Submit][Status][Discuss ...

  9. 【BZOJ-4698】Sandy的卡片 后缀数组

    4698: Sdoi2008 Sandy的卡片 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 140  Solved: 55[Submit][Stat ...

随机推荐

  1. iF.svnadmin 安装遇到的坑

    iF.svnadmin 官网:http://svnadmin.insanefactory.com/ 安装配置iF.svnadmin : http://blog.linhere.com/archives ...

  2. FCC编程题之中级算法篇(中)

    介绍 接着上次的中级算法题 目录 1. Missing letters 2. Boo who 3. Sorted Union 4. Convert HTML Entities 5. Spinal Ta ...

  3. POJ-2318 TOYS 计算几何 判断点在线段的位置

    题目链接:https://cn.vjudge.net/problem/POJ-2318 题意 在一个矩形内,给出n-1条线段,把矩形分成n快四边形 问某些点在那个四边形内 思路 二分+判断点与位置关系 ...

  4. scrapy爬取boss直聘实习生数据

    这个..是我最近想找实习单位..结果发现boss上很多实习单位名字就叫‘实习生’.......太不讲究了 == 难怪一直搜不到..咳,其实是我自己水平有限,有些简历根本就投不出去 == 所以就想爬下b ...

  5. CentOS的基本设置界面

    系统的基本设置,如语言.键盘鼠标.时间.网络.壁纸.通知等功能的设置 高级设置:如磁盘分区.系统日志.各种系统分析工具

  6. python 退出程序的执行

    使用sys.exit()退出当前程序的执行 import sys if x==0: sys.exit()

  7. pythonweb django的学习

    Django 环境搭建及创建项目 首先安装django包,我使用的是pycharm,所以直接在IDE中就可以直接安装,但是django还需要手动配置系统变量 找到python根目录下的django文件 ...

  8. 【转】Hook钩子C#实例

    [转]Hook钩子C#实例 转过来的文章,出处已经不知道了,但只这篇步骤比较清晰,就贴出来了. 一.写在最前 本文的内容只想以最通俗的语言说明钩子的使用方法,具体到钩子的详细介绍可以参照下面的网址: ...

  9. 洛谷 P2970 [USACO09DEC]自私的放牧Selfish Grazing

    P2970 [USACO09DEC]自私的放牧Selfish Grazing 题目描述 Each of Farmer John's N (1 <= N <= 50,000) cows li ...

  10. 对于树的序列化,用了stream,很好

    https://leetcode.com/problems/serialize-and-deserialize-binary-tree/?tab=Description 下面这个解法里面的C++部分很 ...