BZOJ 1221 [HNOI2001] 软件开发 费用流_建模

观察上述建模方式与“形象化”图片,我们发现我们构建的网络模型满足流出量与流入量守恒.
每个 $y_{i}$ 会由先前剩下的 $f_{a}$ 与 $f_{b}$ 填充,再由源点直接流入 $y_{i}$ 的 $f$ 所填入.
一个十分巧妙的网络流模型.
Code:
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 300000
#define inf 1000000
#define N 3005
#define nex(n) (n + 1002)
using namespace std;
struct Edge
{
int from,to,cap,cost;
Edge(int from = 0,int to = 0,int cap = 0,int cost = 0) : from(from),to(to),cap(cap),cost(cost){}
};
vector<Edge>edges;
vector<int>G[maxn];
void addedge(int u,int v,int c,int d)
{
edges.push_back(Edge(u,v,c,d));
edges.push_back(Edge(v,u,0,-d));
int m = edges.size();
G[u].push_back(m - 2);
G[v].push_back(m - 1);
}
int flow2[maxn],d[maxn],inq[N],pre[N],nn[N];
int ans,s,t;
queue <int> Q;
int spfa()
{
for(int i = 0;i < N; ++i) d[i] = flow2[i] = inf;
memset(inq,0,sizeof(inq));
d[s] = 0, inq[s] = 1;
Q.push(s);
while(!Q.empty())
{
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int sz = G[u].size(),i = 0; i < sz ; ++i)
{
Edge e = edges[G[u][i]];
if(d[e.to] > d[u] + e.cost && e.cap > 0)
{
d[e.to] = d[u] + e.cost;
flow2[e.to] = min(e.cap, flow2[u]);
pre[e.to] = G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to] = 1;
}
}
}
}
if(flow2[t] == inf) return 0;
int f = flow2[t];
edges[pre[t]].cap -= f, edges[pre[t] ^ 1].cap += f;
int u = edges[pre[t]].from;
while(u != s)
{
edges[pre[u]].cap -= f, edges[pre[u] ^ 1].cap += f;
u = edges[pre[u]].from;
}
ans += f * d[t];
return 1;
}
int getcost()
{
while(spfa());
return ans;
}
int main()
{
// setIO("input");
int n,a,b,f,fa,fb;
scanf("%d%d%d%d%d%d",&n,&a,&b,&f,&fa,&fb);
for(int i = 1;i <= n; ++i) scanf("%d",&nn[i]);
s = 0,t = 2500;
for(int i = 1;i <= n; ++i)
{
addedge(s, i, nn[i], 0);
addedge(nex(i), t, nn[i], 0);
addedge(s, nex(i), inf, f);
if(i + 1 <= n) addedge(i, i + 1, inf,0);
}
for(int i = 1;i <= n; ++i)
{
if(i + a + 1 <= n) addedge(i,nex(i + 1 + a),inf,fa);
if(i + b + 1 <= n) addedge(i,nex(i + b + 1),inf,fb);
}
printf("%d",getcost());
return 0;
}
BZOJ 1221 [HNOI2001] 软件开发 费用流_建模的更多相关文章
- bzoj 1221 [HNOI2001] 软件开发 费用流
[HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1938 Solved: 1118[Submit][Status][D ...
- BZOJ 1221: [HNOI2001] 软件开发(最小费用最大流)
不知道为什么这么慢.... 费用流,拆点.... --------------------------------------------------------------------------- ...
- BZOJ 1221: [HNOI2001] 软件开发
1221: [HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1428 Solved: 791[Submit][Stat ...
- BZOJ 3280: 小R的烦恼 & BZOJ 1221: [HNOI2001] 软件开发
3280: 小R的烦恼 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 399 Solved: 200[Submit][Status][Discuss ...
- [BZOJ 1221] [HNOI2001] 软件开发 【费用流 || 三分】
题目链接:BZOJ - 1221 题目分析 算法一:最小费用最大流 首先这是一道经典的网络流问题.每天建立两个节点,一个 i 表示使用毛巾,一个 i' 表示这天用过的毛巾. 然后 i 向 T 连 Ai ...
- BZOJ 1221: [HNOI2001] 软件开发【最小费用最大流】
Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员 ...
- 【bzoj1221】[HNOI2001] 软件开发 费用流
题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...
- BZOJ1221 [HNOI2001]软件开发 - 费用流
题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...
- BZOJ 1221 [HNOI2001] 软件开发(费用流)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1221 [题目大意] 每天对毛巾都有一定的需求ni,每天可以花f价值每条购买毛巾, 当天 ...
随机推荐
- 【微软2017年预科生计划在线编程笔试 B】Tree Restoration
[题目链接]:https://hihocoder.com/problemset/problem/1490 [题意] 给你一棵树的以下信息: 1.节点个数 2.给出树的每一层从左到右的顺序每个节点的编号 ...
- Spring事务的传播行为分析
前言 最近项目有涉及到Spring事务,所以工作之余,想认真了解学习下Spring事务,查阅了若干资料,做了一个demo(PS:参考了大牛的). 现分享总结如下: 1.Spring 事务的简介 理解事 ...
- C语言——定义&&声明
1.变量的定义&声明 变量的声明有两种情况: <1>一种是需要建立存储空间的.例如:int a 在声明的时候就已经建立了存储空间. <2>另一种是不需要建立存储空间的. ...
- i386和x86-64区别通俗易懂版本(转)
x86架构首度出现在1978年推出的Intel 8086中央处理器,它是从Intel 8008处理器中发展而来的,而8008则是发展自Intel 4004的.Intel之后又推出了包括80186.80 ...
- 彻底解决Android GPS没法定位这一顽固问题
大家去网上搜索Android定位location为null没法定位问题.预计有一大堆文章介绍怎样来解决.可是最后大家发现基本没用. 本文将从Android定位实现原理来深入分析没法定位原因并提出真正的 ...
- android 细节之An internal error occurred during: "Launching New_configuration".
今天在导入公司的一个小demo时候发现了一个非常有意思的错误. An internal error occurred during: "Launching New_configuration ...
- Window上python 开发--1.搭建开发环境
事实上在开发python最好在ubuntu环境下,简单也便于扩展各个package.可是我的linux的电脑临时不在身边.还的我老婆的电脑win7没办法啊. 因为python的跨平台性.在window ...
- 初探boost之noncopyable学习笔记
noncopyable 功能 同意程序轻松实现一个不可复制的类. 需包括头文件 #include<boost/noncopyable.hpp> 或 #include<boos ...
- java怎么学
java怎么学 给你推荐一个写得非常用心的Java基础教程:Java入门基础教程 | 天码营 这个教程将Java的入门基础知识贯穿在一个实例中,逐步深入,可以帮助你快速进入Java编程的世界.万事开头 ...
- P1025小飞侠的游园方案
描述 经过抽签选择,小智将军第一个进入考场. 菜虫:(身上散射出华贵(?)的光芒)欢迎你,第一位挑战者!! 小智:……(走到菜虫身后,关灯)女王陛下,虽然我们国家现在很富裕,但也请您不要浪费电来用这么 ...