BZOJ 1221 [HNOI2001] 软件开发 费用流_建模

观察上述建模方式与“形象化”图片,我们发现我们构建的网络模型满足流出量与流入量守恒.
每个 $y_{i}$ 会由先前剩下的 $f_{a}$ 与 $f_{b}$ 填充,再由源点直接流入 $y_{i}$ 的 $f$ 所填入.
一个十分巧妙的网络流模型.
Code:
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 300000
#define inf 1000000
#define N 3005
#define nex(n) (n + 1002)
using namespace std;
struct Edge
{
int from,to,cap,cost;
Edge(int from = 0,int to = 0,int cap = 0,int cost = 0) : from(from),to(to),cap(cap),cost(cost){}
};
vector<Edge>edges;
vector<int>G[maxn];
void addedge(int u,int v,int c,int d)
{
edges.push_back(Edge(u,v,c,d));
edges.push_back(Edge(v,u,0,-d));
int m = edges.size();
G[u].push_back(m - 2);
G[v].push_back(m - 1);
}
int flow2[maxn],d[maxn],inq[N],pre[N],nn[N];
int ans,s,t;
queue <int> Q;
int spfa()
{
for(int i = 0;i < N; ++i) d[i] = flow2[i] = inf;
memset(inq,0,sizeof(inq));
d[s] = 0, inq[s] = 1;
Q.push(s);
while(!Q.empty())
{
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int sz = G[u].size(),i = 0; i < sz ; ++i)
{
Edge e = edges[G[u][i]];
if(d[e.to] > d[u] + e.cost && e.cap > 0)
{
d[e.to] = d[u] + e.cost;
flow2[e.to] = min(e.cap, flow2[u]);
pre[e.to] = G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to] = 1;
}
}
}
}
if(flow2[t] == inf) return 0;
int f = flow2[t];
edges[pre[t]].cap -= f, edges[pre[t] ^ 1].cap += f;
int u = edges[pre[t]].from;
while(u != s)
{
edges[pre[u]].cap -= f, edges[pre[u] ^ 1].cap += f;
u = edges[pre[u]].from;
}
ans += f * d[t];
return 1;
}
int getcost()
{
while(spfa());
return ans;
}
int main()
{
// setIO("input");
int n,a,b,f,fa,fb;
scanf("%d%d%d%d%d%d",&n,&a,&b,&f,&fa,&fb);
for(int i = 1;i <= n; ++i) scanf("%d",&nn[i]);
s = 0,t = 2500;
for(int i = 1;i <= n; ++i)
{
addedge(s, i, nn[i], 0);
addedge(nex(i), t, nn[i], 0);
addedge(s, nex(i), inf, f);
if(i + 1 <= n) addedge(i, i + 1, inf,0);
}
for(int i = 1;i <= n; ++i)
{
if(i + a + 1 <= n) addedge(i,nex(i + 1 + a),inf,fa);
if(i + b + 1 <= n) addedge(i,nex(i + b + 1),inf,fb);
}
printf("%d",getcost());
return 0;
}
BZOJ 1221 [HNOI2001] 软件开发 费用流_建模的更多相关文章
- bzoj 1221 [HNOI2001] 软件开发 费用流
[HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1938 Solved: 1118[Submit][Status][D ...
- BZOJ 1221: [HNOI2001] 软件开发(最小费用最大流)
不知道为什么这么慢.... 费用流,拆点.... --------------------------------------------------------------------------- ...
- BZOJ 1221: [HNOI2001] 软件开发
1221: [HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1428 Solved: 791[Submit][Stat ...
- BZOJ 3280: 小R的烦恼 & BZOJ 1221: [HNOI2001] 软件开发
3280: 小R的烦恼 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 399 Solved: 200[Submit][Status][Discuss ...
- [BZOJ 1221] [HNOI2001] 软件开发 【费用流 || 三分】
题目链接:BZOJ - 1221 题目分析 算法一:最小费用最大流 首先这是一道经典的网络流问题.每天建立两个节点,一个 i 表示使用毛巾,一个 i' 表示这天用过的毛巾. 然后 i 向 T 连 Ai ...
- BZOJ 1221: [HNOI2001] 软件开发【最小费用最大流】
Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员 ...
- 【bzoj1221】[HNOI2001] 软件开发 费用流
题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...
- BZOJ1221 [HNOI2001]软件开发 - 费用流
题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...
- BZOJ 1221 [HNOI2001] 软件开发(费用流)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1221 [题目大意] 每天对毛巾都有一定的需求ni,每天可以花f价值每条购买毛巾, 当天 ...
随机推荐
- 11. IDEA 在同一工作空间创建多个项目
1.创建项目 二..创建工作空间 JavaWorkspace 1.File-> New Project -> 创建工作空间 JavaWorkspace,并 顺便创建项目 JavaOne 2 ...
- 1 java开发工具IDEA的使用
IntelliJ IDEA 2017.1汉化破解版安装图文教程(附汉化补丁) 注册码:http://idea.lanyus.com/ 点击在线生成 IntelliJ IDEA 2017.1正式版发布 ...
- python网络编程系列
计算机基础 网络基础 套接字 socket模块 TCP协议和UDP协议 struct 模块简介 struct 模块解决 TCP黏包问题 socket 客户端的认证 socketserver模块初识 客 ...
- 【例题4-2 uva489】Hangman Judge
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 水题. 中间就赢了算赢.(重复说,算错 [代码] #include <bits/stdc++.h> using name ...
- HDU4572 Bottles Arrangement
/* HDU4572 Bottles Arrangement http://acm.hdu.edu.cn/showproblem.php?pid=4572 数论 找规律 题意:有m行n列和1-n的数各 ...
- 转载 - KMP算法
出处:http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html KMP算法 在介绍KMP算法之前,先介绍一下BF算法. 一. ...
- C#使用PowerShell 操作Exchange
先介绍一篇文章来参考一下 点开文章 该文章的最后使用了SSL来保证账户在连接服务器的时候不发生账户认证错误,但是我经过测试发现这个是不可行的,有一种更为简单的方法 首先要对服务器进行winrm设置 就 ...
- HDOJ GCD 2588【欧拉函数】
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- POJ1742 Coins 背包
题目大意:给出一些钱币的价值和对应的数目,求在一定价值限定下这些钱币能凑成的价值数. 本题用多重背包直接拆分或二进制拆分法都太慢.说起处理一组物品,完全背包可算是比较效率高的,但是本题中物体的数目是有 ...
- android的低内存管理器【转】
本文转载自:http://blog.csdn.net/haitaoliang/article/details/22092321 版权声明:本文为博主原创文章,未经博主允许不得转载. 安卓应用不用太在意 ...