Code:

#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int N=500000+3;
const int INF=-233333333+2;
int head[N],to[N<<1],nex[N<<1],val[N<<1],d[N],inq[N];
queue<int>Q;
int cnt,s,t,n;
void add_edge(int u,int v,int c)
{
nex[++cnt]=head[u],head[u]=cnt;
to[cnt]=v,val[cnt]=c;
}
int spfa()
{
for(int i=1;i<=n;++i)d[i]=INF;
d[s]=0;Q.push(s);inq[s]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
inq[u]=0;
for(int v=head[u];v;v=nex[v])
if(d[u]+val[v]>d[to[v]])
{
d[to[v]]=d[u]+val[v];
if(inq[to[v]]==0)
{
Q.push(to[v]);
inq[to[v]]=1;
}
}
}
return d[t];
}
int main()
{
int MIN=N,MAX=0;
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
int a,b;
scanf("%d%d",&a,&b);
MIN=min(MIN,a); MAX=max(MAX,b);
add_edge(a,b+1,2);
}
for(int i=MIN;i<=MAX;++i)
{
add_edge(i+1,i,-1);
add_edge(i,i+1,0);
}
s=MIN,t=MAX+1;
printf("%d",spfa());
return 0;
}

Integer Intervals POJ - 1716_查分约束_的更多相关文章

  1. poj 1364 查分约束

    #include<stdio.h> #include<iostream> #include<stack> #include<string.h> usin ...

  2. poj 1201 Interval (查分约束)

    /* 数组开大保平安. 查分约束: 输入的时候维护st和end 设每个点取元素di个 维护元素个数前缀和s Sbi-Sai-1>=ci 即:建立一条从ai-1到bi的边 权值为ci 表示ai到b ...

  3. 洛谷P1993 小 K 的农场(查分约束)

    /* 加深一下对查分约束的理解 建图的时候为了保证所有点联通 虚拟一个点 它与所有点相连 权值为0 然后跑SPFA判负环 这题好像要写dfs的SPFA 要不超时 比较懒 改了改重复进队的条件~ */ ...

  4. codevs 1242 布局(查分约束+SPFA)

    /* 查分约束. 给出的约束既有>= 又有<= 这时统一化成一种 Sb-Sa>=x 建边 a到b 权值为x Sb-Sa<=y => Sa-Sb>=-y 建边 b到a ...

  5. BZOJ2330 糖果题解 查分约束

    BZOJ 2330 糖果题解 差分约束系统 + SPFA 题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2330 Description ...

  6. 最短路&查分约束

    [HDU] 1548 A strange lift 根蒂根基最短路(或bfs)★ 2544 最短路 根蒂根基最短路★ 3790 最短路径题目 根蒂根基最短路★ 2066 一小我的观光 根蒂根基最短路( ...

  7. zoj Burn the Linked Camp (查分约束)

    Burn the Linked Camp Time Limit: 2 Seconds      Memory Limit: 65536 KB It is well known that, in the ...

  8. POJ1364基本的查分约束问题

    题意:       给了由n个数组成的一个数列,然后给你各种区间的和是大于ci还是小于ci啥的,最后问你是否冲突. 思路:       差分约束水题,不过wa了两次,原因处理区间问题的细节马虎了,说下 ...

  9. POJ1094查分约束,判断关系是否唯一

    题意:       给你一些a<b的关系,然后有三组询问. 1 当前这组之后如果能确定这n个数的大小关系,那么就输出关系 2 当前时候出现bug,就是和前面如果冲突,那么就不行 3 最后的答案是 ...

随机推荐

  1. GOF23设计模式之原型模式

    GOF23设计模式之原型模式 1)通过 new 产生一个对象需要飞船繁琐的数据准备或访问权限,则可以使用原型模式. 2)就算 java 中的克隆技术,以某个对象为原型,复制出新的对象.显然,新的对象具 ...

  2. elasticsearch 分布式阅读笔记(二)

    说明 扩展分为 纵向扩展:购买更好的服务器 横向扩展:增加服务器(elasticsearch更适合横向扩展) elasticsearch可以用于构建高可用和可扩展的系统,elasticsearch天生 ...

  3. axios 全攻略之基本介绍与使用(GET 与 POST)

    axios axios 是一个基于 Promise 的 HTTP 客户端,专门为浏览器和 node.js 服务 Vue 2.0 官方推荐使用 axios 来代替原来的 Vue request,所以这里 ...

  4. PlayerPrefs存储Vector3等结构数据

     孙广东   2016.3.31 之前有网友询问这个问题, 当时我仅仅是 提供了一个思路, 使用json序列化.反序列化. 以下就写出两种(都是仅仅能变成字符串) 1.json的序列化.反序列化方 ...

  5. 通过top 5等待事件查看sql语句

    设计的动态性能视图有:v$session_event,v$session,v$sqlarea,首先在v$session_event中可以找到event,然后通过其动态性能视图找到sid,可以在v$se ...

  6. AUTOCAD2013 以上利用ACCORECONSOLE+ SCR后台批量清理图纸

    无意中浏览到南胜大神的博客,https://www.cnblogs.com/NanShengBlogs/p/10957489.html 受此启发,特意改装此方法用于批量清理图纸,效果极佳. 详细介绍详 ...

  7. bind(),call(), apply()方法的区别是什么?

    bind(),call(), apply()方法的区别是什么? 共同点:改变this指向,任何调用都不在起作用 bind() 改变this的指向,不会调用函数,返回一个新的函数 var o ={a:' ...

  8. if,elif,else的关系 input print int的用法

    qian=input("找劳保网是什么网站?:")if qian=="zhaolaobaowang.com": print("正确")els ...

  9. Springboot使用AOP实现统一处理Web请求日志

    1.要使我们自定义的记录日志能够打印出来,我们需要先排除springboot默认的记录日志,添加如下的设置 2.新建 resources/log4j.properties 我的设置为: # LOG4J ...

  10. Educational Codeforces Round 35

    Nearest Minimums 相同的数里最小的数里的最小距离 Solution Two Cakes Solution Three Garlands 瞎比试 Solution Inversion C ...