Project Euler 48 Self powers( 大数求余 )
题意:
项的自幂级数求和为 11 + 22 + 33 + … + 1010 = 10405071317。
求如下一千项的自幂级数求和的最后10位数字:11 + 22 + 33 + … + 10001000。
思路:
求最后十位数字 % 1010 即可。
对于快速幂中数据溢出的问题,有两种解决方法:
1. 方法一:对于两个数 x y,现在想求 x * y % MOD,可以将 x 表示成 a * DIGS + b,y 表示成 c * DIGS + d,x * y % MOD 则等价与 ( a * c * DIGS2 + a * d * DIGS + b * c * DIGS + b * d ) % MOD ( DIGS = 1E5 ) 这样进行分解后就可以有效的避免数据溢出。
2. 方法二:对于快速幂中的乘法,我们可以写个与快速幂类似的快速乘法,在快速乘法的过程中不断取模来保持数据在范围之内。对于 i % 10 == 0 的情况 i i % MOD 一定为 0
方法一代码:
/*************************************************************************
> File Name: euler048t2.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年07月01日 星期六 16时41分22秒
************************************************************************/
#include <stdio.h>
#include <inttypes.h>
#define MOD 10000000000
#define MAX_N 1000
#define DIGS 100000
int64_t Multi(int64_t x , int64_t y) {
int64_t a , b , c , d , ans = 0;
a = x / DIGS; b = x % DIGS;
c = y / DIGS; d = y % DIGS;
ans = (ans + ((a * d) % MOD * DIGS) % MOD) % MOD;
ans = (ans + ((b * c) % MOD * DIGS) % MOD) % MOD;
ans = (ans + (b * d) % MOD) % MOD;
return ans;
}
int64_t quick_pow(int64_t a , int64_t b , int64_t mod) {
int64_t ret = 1;
while (b) {
if (b & 1) ret = Multi(ret , a);
a = Multi(a , a);
b >>= 1;
}
return ret;
}
int32_t main() {
int64_t sum = 0;
for (int32_t i = 1 ; i <= MAX_N ; i++) {
if (i % 10 == 0) continue;
sum = (sum + quick_pow(i , i , MOD)) % MOD;
}
printf("%"PRId64"\n",sum);
return 0;
}
方法二代码:
/*************************************************************************
> File Name: euler048.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年07月01日 星期六 16时21分58秒
************************************************************************/
#include <stdio.h>
#include <inttypes.h>
#define MAX_N 1000
#define MOD 10000000000
int64_t quick_multi(int64_t a , int64_t b , int64_t mod) {
int64_t ret = 0;
while (b) {
if (b & 1) ret = (ret + a) % mod;
a = (a << 1) % mod;
b >>= 1;
}
return ret % mod;
}
int64_t quick_power(int64_t a , int64_t b , int64_t mod) {
int64_t ret = 1;
while (b) {
if (b & 1) ret = quick_multi(ret , a , mod);
a = quick_multi(a , a , mod);
b >>= 1;
}
return ret % mod;
}
int32_t main() {
int64_t sum = 0;
for (int32_t i = 1 ; i <= MAX_N ;i++) {
if (i % 10 == 0) continue;
sum = (sum + (quick_power((int64_t)i , (int64_t)i , MOD))) % MOD;
}
printf("%"PRId64"\n",sum);
return 0;
}
Project Euler 48 Self powers( 大数求余 )的更多相关文章
- project euler 48 Self powers 解决乘法爆long long
题目链接 求 $ 1^1+2^2+\cdots + 1000^{1000} $ %1e10 的结果. 唯一的坑点是会爆longlong, 所以用特殊的乘法. #include <iostream ...
- POJ 2635 The Embarrassed Cryptographer(大数求余)
题意:给出一个大数,这个大数由两个素数相乘得到,让我们判断是否其中一个素数比L要小,如果两个都小,输出较小的那个. 分析:大数求余的方法:针对题目中的样例,143 11,我们可以这样算,1 % 11 ...
- POJ2635-The Embarrassed Cryptographer 大数求余
题目链接:http://poj.org/problem?id=2635 题目分析: http://blog.csdn.net/lyy289065406/article/details/6648530
- (大数 求余) Large Division Light OJ 1214
Large Division Given two integers, a and b, you should check whether a is divisible by b or not. We ...
- Project Euler 29 Distinct powers( 大整数质因数分解做法 + 普通做法 )
题意: 考虑所有满足2 ≤ a ≤ 5和2 ≤ b ≤ 5的整数组合生成的幂ab: 22=4, 23=8, 24=16, 25=3232=9, 33=27, 34=81, 35=24342=16, 4 ...
- Large Division (大数求余)
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- 大数求模 sicily 1020
Search
- 2016中国大学生程序设计竞赛 - 网络选拔赛 1001 A water problem (大数取余)
Problem Descripton Two planets named Haha and Xixi in the universe and they were created with the un ...
- 如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
随机推荐
- HDU 4517
EASY题,直接统计(1,1)到(i,j)的黑点个数,然后计算出以(i,j)点为右下角的矩形内的黑点个数是x*y即可. 注意当x==y时不要重复统计. #include <iostream> ...
- 《编程导论(Java)·2.1.2 啊,我看到了多态》-什么是多态(polymorphism)
1.不明觉厉 很多人学习多态时,会认为. 之所以不明觉厉,由于多态的定义:事物存在的多种表现形态:而后,有人将重载(overload).改写(override).多态变量和泛型归结于同一个术语&quo ...
- HTML5的未来
2014年10月29日,万维网联盟(W3C)宣布,经过差点儿8年的艰辛努力.该标准规范终于终于制定完毕.之所以是8年,由于在1999年HTML4的规范制定以后,W3C对于HTML的发展.貌似就不再那么 ...
- MX2怎样利用Fiddler进行网络数据抓包
首先须要保证PC与手机在同一局域网内或有独立公网IP, 下面以在同一局域网为例(保证手机能訪问到这台PC机器): 1. PC端配置 1). 安装Fiddler 2). 开启Fiddler下面功能: ...
- python爬虫解决百度贴吧登陆验证码问题
作为贴吧重度用户,写了个贴吧爬虫脚本 抄了一些别人的代码.记得有个验证码解决的.可是忘了链接了,今天最终自己攻克了. 首先要让登陆须要验证码,不停地登陆就好了...度娘非常快会加上验证码大法的... ...
- [深入理解Android卷一全文-第七章]深入理解Audio系统
由于<深入理解Android 卷一>和<深入理解Android卷二>不再出版,而知识的传播不应该由于纸质媒介的问题而中断,所以我将在CSDN博客中全文转发这两本书的全部内容. ...
- Java编程:切面条
/* 一根高筋拉面,中间切一刀,能够得到2根面条. 假设先对折1次.中间切一刀.能够得到3根面条. 假设连续对折2次,中间切一刀.能够得到5根面条. 那么.连续对折10次.中间切一刀.会得到多少面条呢 ...
- 安装eclipse maven插件m2eclipse No repository found containing
m2eclipse插件是Eclipse的一款Maven插件. 安装m2eclipse插件的步骤例如以下: 启动Eclipse,在菜单条中选择Help,然后选择Install New Software- ...
- [Plugin] 文件上传利器SWFUpload使用指南
SWFUpload是 一个flash和js相结合而成的文件上传插件,其功能非常强大.以前在项目中用过几次,但它的配置参数太多了,用过后就忘记怎么用了,到以后要用时又得 到官网上看它的文档,真是太烦了. ...
- postgresql 常规操作以及检查备份
一.建表时,复制源表的信息test=# test=# \d test.t1 Table "test.t1" Column | Type | Collation | Nullable ...