题意:链接

方法: Treap

解析:

前几道资格赛的题水的不行,这道Gold的题就够分量辣。

首先这个曼哈顿距离啥的肯定能做文章,怎么转化是个问题,自己玩了一会没玩出来,就查了查曼哈顿距离的转化,发现这个玩意转化之后就变得有思路多了,所以这数学本领还是非常重要啊=-=

先看曼哈顿距离的定义

|x1−x2|+|y1−y2|

拆绝对值

x1−x2+y1−y2或x1−x2+y2−y1

x2−x1+y1−y2或x2−x1+y2−y1

即|x1+y1−(x2+y2)|或|x1−y1−(x2−y2)|

设x1+y1为x′,x1−y1为y′

则|x1′−x2′|或|y1′−y2′|

所以原要求1转化为

max(|x1′−x2′|,|y1′−y2′|)<=c

这样的二维的东西显然排序一下降一维。

按x’排序后。维护一个x’的队列,再对y’维护一个平衡树即可了。

至于要求2,即是并查集,也就是说平衡树每一次拿出来前驱后继维护下并查集即可。

y’显然可能反复,又维护并查集我们须要拿出来标号。所以平衡树须要多维护一个no,所以再删除的时候我们要找到v与no都跟要删除的目标节点同样的节点删除。

(前驱写挫WA一次= =!

代码:

#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100010
using namespace std;
int fa[N];
int q[N];
int tot;
int root;
int cnt[N];
struct node
{
int l,r,w,v,no,rnd,siz;
}tr[N];
void pushup(int rt)
{
tr[rt].siz=tr[tr[rt].l].siz+tr[tr[rt].r].siz+tr[rt].w;
}
void rturn(int &rt)
{
int t=tr[rt].l;
tr[rt].l=tr[t].r;
tr[t].r=rt;
tr[t].siz=tr[rt].siz;
pushup(rt);
rt=t;
}
void lturn(int &rt)
{
int t=tr[rt].r;
tr[rt].r=tr[t].l;
tr[t].l=rt;
tr[t].siz=tr[rt].siz;
pushup(rt);
rt=t;
}
void insert(int &rt,int v,int no)
{
if(!rt)
{
rt=++tot;
tr[rt].siz=1,tr[rt].no=no,tr[rt].rnd=rand();
tr[rt].v=v,tr[rt].w=1;
return;
}
tr[rt].siz++;
if(v<=tr[rt].v)
{
insert(tr[rt].l,v,no);
if(tr[tr[rt].l].rnd<tr[rt].rnd)rturn(rt);
}else
{
insert(tr[rt].r,v,no);
if(tr[tr[rt].r].rnd<tr[rt].rnd)lturn(rt);
}
}
void del(int &rt,int v,int no)
{
if(!rt)return;
tr[rt].siz--;
if(tr[rt].v==v&&tr[rt].no==no)
{
if(tr[rt].l*tr[rt].r==0){rt=tr[rt].l+tr[rt].r;return;}
else
{
if(tr[tr[rt].l].rnd<tr[tr[rt].r].rnd)
{
rturn(rt);
del(rt,v,no);
}else
{
lturn(rt);
del(rt,v,no);
}
}
}else if(v<tr[rt].v)
{
del(tr[rt].l,v,no);
}else del(tr[rt].r,v,no);
}
int ans;
void q_pre(int rt,int v)
{
if(!rt)return;
if(v>=tr[rt].v)
{
ans=rt;
q_pre(tr[rt].r,v);
}else q_pre(tr[rt].l,v);
}
void q_sub(int rt,int v)
{
if(!rt)return;
if(v<tr[rt].v)
{
ans=rt;
q_sub(tr[rt].l,v);
}else q_sub(tr[rt].r,v);
}
struct point
{
int x,y;
}pt[N];
int n,c;
int find(int x)
{
if(x!=fa[x])return fa[x]=find(fa[x]);
return x;
}
int cmp(point a,point b)
{
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
int main()
{
scanf("%d%d",&n,&c);
for(int i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
pt[i].x=x+y,pt[i].y=x-y;
fa[i]=i;
}
sort(pt+1,pt+n+1,cmp);
int head=1,tail=0;
for(int i=1;i<=n;i++)
{
while(head<=tail&&pt[i].x-pt[q[head]].x>c)
{
del(root,pt[q[head]].y,q[head]);
head++;
}
ans=0;
q_pre(root,pt[i].y);
int tmp=ans;
if(tmp!=0)
{
if(pt[i].y-tr[tmp].v<=c)
{
if(find(i)!=find(tr[tmp].no))
{
fa[find(i)]=find(tr[tmp].no);
}
}
}
ans=0;
q_sub(root,pt[i].y);
tmp=ans;
if(tmp!=0)
{
if(tr[tmp].v-pt[i].y<=c)
{
if(find(i)!=find(tr[tmp].no))
{
fa[find(i)]=find(tr[tmp].no);
}
}
}
insert(root,pt[i].y,i);
q[++tail]=i;
}
int ma=0,print=0;
for(int i=1;i<=n;i++)
{
int fx=find(i);
if(!cnt[fx])
{
print++;
}
cnt[fx]++;
if(cnt[fx]>ma)ma=cnt[fx];
}
printf("%d %d\n",print,ma);
}

BZOJ 1604 [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 Treap的更多相关文章

  1. BZOJ 1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居

    题目 1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 Time Limit: 5 Sec  Memory Limit: 64 MB Description ...

  2. bzoj 1604 [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居(set+并查集)

    Description 了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”.每只奶牛在吃草的 时候有一个独一无二的位置坐标Xi,Yi( ...

  3. bzoj 1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居——排序+贪心+set

    Description 了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”.每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l ...

  4. BZOJ 1604 [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居:队列 + multiset + 并查集【曼哈顿距离变形】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1604 题意: 平面直角坐标系中,有n个点(n <= 100000,坐标范围10^9) ...

  5. bzoj 1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 曼哈顿生成树

    大致题意:统计平面上由曼哈顿距离小于等于c的点对组成联通块的个数. 曼哈顿生成树的模板题.有关讲解:http://blog.csdn.net/acm_cxlove/article/details/88 ...

  6. bzoj 1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居【切比雪夫距离+并查集+multiset】

    参考:http://hzwer.com/4361.html 坐标开long long,inf开大点 先曼哈顿转切比雪夫(x+y,x-y),距离就变成了max(x',y'): 先按x排序,维护两个指针, ...

  7. 【BZOJ1604】[Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 Treap+并查集

    [BZOJ1604][Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 Description 了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000) ...

  8. 【BZOJ】1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居(set+并查集+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1604 这题太神了... 简直就是 神思想+神做法+神stl.. 被stl整的我想cry...首先,, ...

  9. 【BZOJ】1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居

    [算法]并查集+平衡树+数学+扫描线 [题解] 经典曼哈顿距离转切比雪夫距离. 曼哈顿距离:S=|x1-x2|+|y1-y2|<=c 即:max(x1-x2+y1-y2,x1-x2-y1+y2, ...

随机推荐

  1. POJ 3630 Phone List(字典树)

    题意 题意:t个case(1<=t<=40),给你n个电话号码(电话号码长度<10)(1 ≤ n ≤ 10000),如果有电话号码是另一个电话号码的前缀,则称这个通讯录是不相容的,判 ...

  2. [ZJOI2012]旅游(树的直径)

    [ZJOI2012]旅游 题目描述 到了难得的暑假,为了庆祝小白在数学考试中取得的优异成绩,小蓝决定带小白出去旅游~~ 经过一番抉择,两人决定将T国作为他们的目的地.T国的国土可以用一个凸N边形来表示 ...

  3. HNU 12961 BitTorrent DP

    题意: 你在网上下载东西,一个文件存储在一段或者多段里面,问怎么选择能在规定的流量内下载最多的文件数量.每段的大小一样. 思路: 习惯了做答案保存在DP数组里的题,做这种答案保存在下标里的题,转不过弯 ...

  4. 【uva 1025】A Spy in the Metro

    [题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  5. Oracle EBS发放销售订单

     模拟发放销售订单界面进行发放操作 PROCEDURE insert_row(x_batch_id OUT NUMBER) IS l_autopack_flag VARCHAR2(1 ); l_a ...

  6. UITableView去掉最后切割线的一种方法

    UITableView以style:UITableViewStylePlain方式创建时.仅仅要有cell,就会有一条黑线 哪怕至于一个cell也会有,如图 在网上找了集中方法,都不好使,比方http ...

  7. JAVA并发-为现有的线程安全类添加原子方法

    JAVA中有许多线程安全的基础模块类,一般情况下,这些基础模块类能满足我们需要的所有操作,但更多时候,他们并不能满足我们所有的需要.此时,我们需要想办法在不破坏已有的线程安全类的基础上添加一个新的原子 ...

  8. JNI学习积累之二 ---- 数据类型映射、域描述符说明

    本文原创,转载请注明出处:http://blog.csdn.NET/qinjuning 在Java存在两种数据类型: 基本类型 和 引用类型 ,大家都懂的 . 在JNI的世界里也存在类似的数据类型,与 ...

  9. js library 集合

    js library 集合 查看已经开源的js library https://cdnjs.com/

  10. centos 5的yum源无法使用的解决方法( 转载)

    由于centos 5 已经停更.于是导致yum源也不能用了. 例如安装screen的时候提示 Determining fastest mirrors* base: denver.gaminghost. ...