我们在上一篇文章中通过一个简单的样例算是入门卡尔曼滤波了。本文将以此为基础讨论一些技术细节。

卡尔曼滤波(Kalman Filter)

http://blog.csdn.net/baimafujinji/article/details/50646814

在上一篇文章中。我们已经对HMM和卡尔曼滤波的关联性进行了初步的讨论。參考文献【3】中将二者之间的关系归结为下表。

上表是什么意思呢?我们事实上能够以下的式子来表示,当中,w 和 v 分别表示状态转移 和 測量 过程中的不确定性,也即是噪声,既然是噪声就能够假设它们服从一个零均值的高斯分布。这事实上跟我们在上一篇文章中所给出的形式是一致的。也就是说我们觉得过去的状态假设是 xt-1。那么当前状态xt应该是 xt-1的一个线性变换。而这个预计过程事实上是有误差的,用一个零均值的高斯噪声(概率分布)来表达。

相似地,当前的測量值yt应该是真实值 xt 的一个线性变换。而这个測量过程仍然是有误差的,也用一个零均值的高斯噪声(概率分布)来表达。

      (1)

上一节中我们还讲过,在 [t0, t1] 时间段内的測量为Y,对应的预计为,则当t = t1 时, 称为X(t)的预计(或者称为滤波)。当然如今我们也只须要将注意力放在滤波上。所以终于要求的应该是以下这个式子

依据条件概率的链式法则以及马尔科夫链的无记忆性,再去掉常值系数的情况下,就能够得到以下的结论(假设你对有关数学公式记得不是非常清楚能够參考http://blog.csdn.net/baimafujinji/article/details/50441927)

当中,P( xt | y1, … , yt-1)就是Prediction(预測),由于它表示的意义是已知从1到t-1时刻的观測值y1, … , yt-1的情况下求 t 时刻的状态值xt

还有一方面,P( xt | y1, … , yt)就是Update,由于它表示当我们已经获得yt时。再对xt 进行的一个更新(或修正)。

依据马尔科夫链的无记忆性,可知P( yt | xt, y1, … , yt-1) = P( yt | xt) 。

就预測部分而言。我们希望引入xt-1。所以能够採用以下的方法(这事实上就是我们在处理普通贝叶斯网络时所用过的方法)

到此为止。事实上你应该能够看出来卡尔曼滤波就形成了一个递归求解的过程。也就是说。我们欲求P( xt | y1, … , yt-1),就须要先求P( xt-1 | y1, … , yt-1),而欲求P( xt-1 | y1, … , yt-1),就要先求P( xt-2 | y1, … , yt-1) ……结合上一篇文章介绍的内容,事实上能够总结卡尔曼滤波的步骤例如以下

也就是说当t = 1时。我们依据观測值y1去预计真实状态x1,这个过程服从一个高斯分布。

然后。当t = 2时,我们依据上一个观測值y1去预測当前的真实状态x2,在获得该时刻的真实观測值y2后,我们又能够预计出一个新的真实状态x2。这时就要据此对由y1预測的结果进行修正(Update),如此往复。

接下来,我们引入一个服从零均值高斯分布的(噪声)变量 Δxt-1

然后试着将Δxt和Δyt以Δxt-1的形式来给出,并且处于方便的考虑。我们忽略掉公式(1)中的控制项 BC。于是有

依据独立性假设,还可知例如以下结论(这些都是兴许计算推导过程中所须要的准备):

以下我们要做的事情就是推导卡尔曼滤波的五个公式,在上一篇文章中,我们很多其它地是从感性的角度给出了这些公式。并没有给出具体的数学推导,接下来我们就要来完毕这项任务。

综上我们已经完整地给出了卡尔曼滤波的理论推导。

对于结论性的东西。你当然能够直接拿来使用。

在一些软件包中,卡尔曼滤波无非是一条命令或者一个函数就能搞定。

我们之所以还在这里给出它的具体推导,主要是鉴于这样的思想事实上在机器学习中也被广泛地用到,所以了解这些技术细节仍然十分有意义。

===================================================================================================

假设你是图像处理的同道中人,欢迎增加图像处理算法交流群(单击链接查看群号)

參考文献:

【1】Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd Edition.

【2】秦永元,张洪钺,汪叔华,卡尔曼滤波与组合导航原理,西北工业大学出版社

【3】徐亦达博士关于卡尔曼滤波的公开课,http://v.youku.com/v_show/id_XMTM2ODU1MzMzMg.html

【4】卡尔曼滤波的原理以及在MATLAB中的实现,http://blog.csdn.net/revolver/article/details/37830675

卡尔曼滤波(Kalman Filter) 的进一步讨论的更多相关文章

  1. 关于卡尔曼滤波(Kalman Filter)的很好讲解

    http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies C#代码: double[] Data = new double[] { 0.39 ...

  2. Kalman Filter、Extended Kalman Filter以及Unscented Kalman Filter介绍

    模型定义 如上图所示,卡尔曼滤波(Kalman Filter)的基本模型和隐马尔可夫模型类似,不同的是隐马尔科夫模型考虑离散的状态空间,而卡尔曼滤波的状态空间以及观测空间都是连续的,并且都属于高斯分布 ...

  3. 卡尔曼滤波—Simple Kalman Filter for 2D tracking with OpenCV

    之前有关卡尔曼滤波的例子都比较简单,只能用于简单的理解卡尔曼滤波的基本步骤.现在让我们来看看卡尔曼滤波在实际中到底能做些什么吧.这里有一个使用卡尔曼滤波在窗口内跟踪鼠标移动的例子,原作者主页:http ...

  4. 卡尔曼滤波(Kalman Filter)在目标边框预测中的应用

    1.卡尔曼滤波的导论 卡尔曼滤波器(Kalman Filter),是由匈牙利数学家Rudolf Emil Kalman发明,并以其名字命名.卡尔曼出生于1930年匈牙利首都布达佩斯.1953,1954 ...

  5. 卡尔曼滤波器 Kalman Filter (转载)

    在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil ...

  6. 无人驾驶技术之Kalman Filter原理介绍

    基本思想 以K-1时刻的最优估计Xk-1为准,预测K时刻的状态变量Xk/k-1,同时又对该状态进行观测,得到观测变量Zk,再在预测与观之间进行分析,或者说是以观测量对预测量进行修正,从而得到K时刻的最 ...

  7. GMM+Kalman Filter+Blob 目标跟踪

    转 http://www.cnblogs.com/YangQiaoblog/p/5462453.html ==========图片版================================== ...

  8. kalman filter卡尔曼滤波器- 数学推导和原理理解-----网上讲的比较好的kalman filter和整理、将预测值和观测值融和

    = 参考/转自: 1 ---https://blog.csdn.net/u010720661/article/details/63253509 2----http://www.bzarg.com/p/ ...

  9. [Math]理解卡尔曼滤波器 (Understanding Kalman Filter) zz

    1. 卡尔曼滤波器介绍 卡尔曼滤波器的介绍, 见 Wiki 这篇文章主要是翻译了 Understanding the Basis of the Kalman Filter Via a Simple a ...

随机推荐

  1. jsp里post和get的乱码解决问题

    6.乱码问题01:<%reques.setCharacterEncoding("utf-8");%> 02:get请求乱码 001.:String 编码之后的字符串 = ...

  2. CF126B Password

    思路: kmp略作修改. 实现: #include <iostream> #include <cstdio> using namespace std; ; int neXt[M ...

  3. JS——正则

    正则的声明: 1.构造函数:var 变量名= new RegExp(/表达式/); 2.直接量:var 变量名= /表达式/; test()方法: 1.正则对象方法,检测测试字符串是否符合该规则,返回 ...

  4. SQL基本操作——DROP撤销索引、表以及数据库

    DROP撤销索引.表以及数据库 --DROP INDEX 命令删除表格中的索引 DROP INDEX table_name.index_name --DROP TABLE 语句删除表(表的结构.属性以 ...

  5. Java我来了

    七天的C#集训,第一天接触Java,觉得很多相似的地方,尝试用eclipse码了几句(有些差别,毕竟没有写C#那么流畅),总体来说觉得还不错,对自己接下来要求是,更加熟练并且牢记Java的命令,更加深 ...

  6. PHP 之中文转为拼音

    /** * Created by PhpStorm. * User: Administrator * Date: 2019/1/2 0002 * Time: 下午 1:01 */ class PinY ...

  7. lsof command not found 解决

    有些centos 没有 lsof命令,需要安装 yum install lsof -y 使用: lsof -i:端口号

  8. Spring处理自动装配的歧义性

    1.标识首选的bean 2.使用限定符@Qualifier 首先在bean的声明上添加@Qualifier 注解: @Component @Qualifier("cdtest") ...

  9. hdu2000 ASCII码排序【C++】

    ASCII码排序 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  10. textarea 提交到数据库的内容,输出到 html 中显示正常的格式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...