题意:

  给出n个城市和m条路,每个城市只能经过一次,想要旅游所有的城市,求需要的最小花费(路径的长度)。

分析:

  做题之前,首先要知道什么是完美匹配。不然题目做了却不知道为什么可以用这个方法来做。完美匹配{X,Y| E},X、Y集合都有n个点(必须相等),它们必须一对一的匹配,并且所有点都要匹配。

  对于此题,每个点都有且只有走一次。把每个点都拆为 i与 i'两个点,i值负责出边(就是i点只有出度),i'负责入边。这样就有了两个集合。集合内的点不会有联系。集合之间的点有联系,但是最后只有是一一对应的关系。

  也许说得不太明白。明白了,就知道这题什么意思了。发现解题只需要用模版。

  建边+ 模版。

  由于最佳匹配,求出来的是边的权值和最大的匹配。而这题要求的是权值和最小。有一个常用的方法,把边权改为负的,就是直接加个负号。在模版中,因为不能匹配返回-1,为了一致性,所以改为1。最后得到的值乘以-1就是我们需要的值。  

  第一次做此题没有理解多少,写了题解(帮助自己理解)也没讲多少。现在重新修改,感觉自己理解得深了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=, INF=0x3f3f3f3f;
int Map[N][N],mat1[N],mat2[N];//匹配上的左右集合
int KM(int m,int n)
{
int s[N],t[N],a[N],b[N];
int i,j,k,p,q,ans=;
for(i=;i<m;i++)
{
a[i]=-INF;
for(j=;j<n;j++)
a[i]=Map[i][j]>a[i]?Map[i][j]:a[i];
if(a[i]==-INF) return ;//cannot match
}
memset(b,,sizeof(b));
memset(mat1,-,sizeof(mat1));
memset(mat2,-,sizeof(mat2));
for(i=;i<m;i++)
{
memset(t,-,sizeof(t));
p=q=;
for(s[]=i;p<=q&&mat1[i]<;p++)
{
for(k=s[p],j=;j<n&&mat1[i]<;j++)
{
if(a[k]+b[j]==Map[k][j]&&t[j]<)
{
s[++q]=mat2[j]; t[j]=k;
if(s[q]<)
for(p=j;p>=;j=p)
{
mat2[j]=k=t[j];p=mat1[k]; mat1[k]=j;
}
}
}
}
if(mat1[i]<)
{
i--,p=INF;
for(k=;k<=q;k++)
{
for(j=;j<n;j++)
if(t[j]<&&a[s[k]]+b[j]-Map[s[k]][j]<p)
p=a[s[k]]+b[j]-Map[s[k]][j];
}
for(j=;j<n;j++) b[j]+=t[j]<?:p;
for(k=;k<=q;k++) a[s[k]]-=p;
}
}
for(i=;i<m;i++) ans+=Map[i][mat1[i]];
return ans;
}
void init()
{
for(int i=;i<N;i++)
for(int j=;j<N;j++)
Map[i][j]=-INF;
}
int main()
{
//freopen("test.txt","r",stdin);
int n,i,j,m,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
while(m--)
{
scanf("%d%d%d",&i,&j,&k);
i--;j--;k=-k;
Map[i][j]=max(Map[i][j],k);
}
printf("%d\n",-*KM(n,n));
}
return ;
}

hdu1853 Cyclic Tour 完美匹配 验证模版的更多相关文章

  1. hdu1853 Cyclic Tour (二分图匹配KM)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  2. HDU1853 Cyclic Tour

    Cyclic Tour                                                                                Time Limi ...

  3. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

  4. HDU1853 Cyclic Tour(最小费用最大流)

    题目大概说给一张有向图,每条边都有权值,要选若干条边使其形成若干个环且图上各个点都属于且只属于其中一个环,问选的边的最少权值和是多少. 各点出度=入度=1的图是若干个环,考虑用最小费用最大流: 每个点 ...

  5. HDU-1853 Cyclic Tour

    最小权值环覆盖问题:用几个环把所有点覆盖,求所选取的边最小的权值之和. 拆点思想+求最小转求最大+KM算法 #include <cstdlib> #include <cstdio&g ...

  6. hdu 1853 Cyclic Tour 最大权值匹配 全部点连成环的最小边权和

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) ...

  7. HDU 3488 Tour (最大权完美匹配)【KM算法】

    <题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...

  8. 最大流增广路(KM算法) HDOJ 1853 Cyclic Tour

    题目传送门 /* KM: 相比HDOJ_1533,多了重边的处理,还有完美匹配的判定方法 */ #include <cstdio> #include <cmath> #incl ...

  9. ZOJ-3933 Team Formation (二分图最佳完美匹配)

    题目大意:n个人,分为两个阵营.现在要组成由若干支队伍,每支队伍由两个人组成并且这两个人必须来自不同的阵营.同时,每个人都有m个厌恶的对象,并且厌恶是相互的.相互厌恶的人不能组成一支队伍.问最多能组成 ...

随机推荐

  1. 【转载】java文件路径问题及getResource和getClassLoader().getResource的区别

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u012572955/article/details/52880520我们经常在java的io操作中读 ...

  2. Python 非空即真、列表生成式、三元表达式 day3

    一.非空即真: Python程序语言指定任何非0和非空(null)值为true,0 或者 null为false 布尔型,False表示False,其他为True 整数和浮点数,0表示False,其他为 ...

  3. [adb]查看 App的appPackage和appActivity

    最近在写app的UI框架,写脚本之前需要知道app的包名和activity,如果获取呢: 需求配置abdrioid sdk环境 方法1:abd log 1. 打开cmd命令窗口2.在命令窗口中输入,a ...

  4. [luogu4799 CEOI2015 Day2] 世界冰球锦标赛(折半搜索)

    传送门 Solution 折半搜索裸题,注意\(long long\) Code #include <cmath> #include <cstdio> #include < ...

  5. Problem 16

    Problem 16 pow(2, 15) = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.2的15次方等于32768,而这些数 ...

  6. python爬虫06 | 你的第一个爬虫,爬取当当网 Top 500 本五星好评书籍

    来啦,老弟 我们已经知道怎么使用 Requests 进行各种请求骚操作 也知道了对服务器返回的数据如何使用 正则表达式 来过滤我们想要的内容 ... 那么接下来 我们就使用 requests 和 re ...

  7. 使用VirtualBox实现端口转发,以SSH与Django为例

    先来认识几个概念 (1)IP地址:又称为互联网协议地址,是计算机的物理地址,相当于计算机的编号,是32位的二进制数,通常被分割成4个8位的二进制数: (2)端口:指设备与外界通讯的接口,一台计算机的端 ...

  8. 【Codeforces 91B】Queue

    [链接] 我是链接,点我呀:) [题意] [题解] 对于每个i,用二分的方法求出来y所在的位置j. 可以这样求. 假设现在二分到了位置mid. 那么随便用个rmq求出来mid..n这一段的最小值tem ...

  9. 浅析IT系统监控方法和应用

    浅析IT系统监控方法和应用 http://blog.csdn.net/zhangman117/article/details/35549363

  10. Mycat分表分库

    一.Mycat介绍 Mycat 是一个开源的分布式数据库系统,是一个实现了 MySQL 协议的的Server,前端用户可以把它看作是一个数据库代理,用 MySQL 客户端工具和命令行访问,而其后端可以 ...