传统的大数据处理方式一般是批处理式的,也就是说,今天所收集的数据,我们明天再把今天收集到的数据算出来,以供大家使用,但是在很多情况下,数据的时效性对于业务的成败是非常关键的。

Spark 和 Flink 都是通用的开源大规模处理引擎,目标是在一个系统中支持所有的数据处理以带来效能的提升。两者都有相对比较成熟的生态系统。是下一代大数据引擎最有力的竞争者。

Spark 的生态总体更完善一些,在机器学习的集成和易用性上暂时领先。

Flink 在流计算上有明显优势,核心架构和模型也更透彻和灵活一些。

本文主要通过实例来分析flink的流式处理过程,并通过源码的方式来介绍流式处理的内部机制。

DataStream整体概述

主要分5部分,下面我们来分别介绍:

1.运行环境StreamExecutionEnvironment

StreamExecutionEnvironment是个抽象类,是流式处理的容器,实现类有两个,分别是

LocalStreamEnvironment:
RemoteStreamEnvironment:
/**
* The StreamExecutionEnvironment is the context in which a streaming program is executed. A
* {@link LocalStreamEnvironment} will cause execution in the current JVM, a
* {@link RemoteStreamEnvironment} will cause execution on a remote setup.
*
* <p>The environment provides methods to control the job execution (such as setting the parallelism
* or the fault tolerance/checkpointing parameters) and to interact with the outside world (data access).
*
* @see org.apache.flink.streaming.api.environment.LocalStreamEnvironment
* @see org.apache.flink.streaming.api.environment.RemoteStreamEnvironment
*/

2.数据源DataSource数据输入

包含了输入格式InputFormat

    /**
* Creates a new data source.
*
* @param context The environment in which the data source gets executed.
* @param inputFormat The input format that the data source executes.
* @param type The type of the elements produced by this input format.
*/
public DataSource(ExecutionEnvironment context, InputFormat<OUT, ?> inputFormat, TypeInformation<OUT> type, String dataSourceLocationName) {
super(context, type); this.dataSourceLocationName = dataSourceLocationName; if (inputFormat == null) {
throw new IllegalArgumentException("The input format may not be null.");
} this.inputFormat = inputFormat; if (inputFormat instanceof NonParallelInput) {
this.parallelism = 1;
}
}

flink将数据源主要分为内置数据源和第三方数据源,内置数据源有 文件,网络socket端口及集合类型数据;第三方数据源实用Connector的方式来连接如kafka Connector,es connector等,自己定义的话,可以实现SourceFunction,封装成Connector来做。

3.DataStream转换

DataStream:同一个类型的流元素,DataStream可以通过transformation转换成另外的DataStream,示例如下

@link DataStream#map

@link DataStream#filter

StreamOperator:流式算子的基本接口,三个实现类

AbstractStreamOperator:

OneInputStreamOperator:

TwoInputStreamOperator:

/**
* Basic interface for stream operators. Implementers would implement one of
* {@link org.apache.flink.streaming.api.operators.OneInputStreamOperator} or
* {@link org.apache.flink.streaming.api.operators.TwoInputStreamOperator} to create operators
* that process elements.
*
* <p>The class {@link org.apache.flink.streaming.api.operators.AbstractStreamOperator}
* offers default implementation for the lifecycle and properties methods.
*
* <p>Methods of {@code StreamOperator} are guaranteed not to be called concurrently. Also, if using
* the timer service, timer callbacks are also guaranteed not to be called concurrently with
* methods on {@code StreamOperator}.
*
* @param <OUT> The output type of the operator
*/

4.DataStreamSink输出

    /**
* Adds the given sink to this DataStream. Only streams with sinks added
* will be executed once the {@link StreamExecutionEnvironment#execute()}
* method is called.
*
* @param sinkFunction
* The object containing the sink's invoke function.
* @return The closed DataStream.
*/
public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) { // read the output type of the input Transform to coax out errors about MissingTypeInfo
transformation.getOutputType(); // configure the type if needed
if (sinkFunction instanceof InputTypeConfigurable) {
((InputTypeConfigurable) sinkFunction).setInputType(getType(), getExecutionConfig());
} StreamSink<T> sinkOperator = new StreamSink<>(clean(sinkFunction)); DataStreamSink<T> sink = new DataStreamSink<>(this, sinkOperator); getExecutionEnvironment().addOperator(sink.getTransformation());
return sink;
}

5.执行

/**
* Executes the JobGraph of the on a mini cluster of ClusterUtil with a user
* specified name.
*
* @param jobName
* name of the job
* @return The result of the job execution, containing elapsed time and accumulators.
*/
@Override
public JobExecutionResult execute(String jobName) throws Exception {
// transform the streaming program into a JobGraph
StreamGraph streamGraph = getStreamGraph();
streamGraph.setJobName(jobName); JobGraph jobGraph = streamGraph.getJobGraph();
jobGraph.setAllowQueuedScheduling(true); Configuration configuration = new Configuration();
configuration.addAll(jobGraph.getJobConfiguration());
configuration.setString(TaskManagerOptions.MANAGED_MEMORY_SIZE, "0"); // add (and override) the settings with what the user defined
configuration.addAll(this.configuration); if (!configuration.contains(RestOptions.BIND_PORT)) {
configuration.setString(RestOptions.BIND_PORT, "0");
} int numSlotsPerTaskManager = configuration.getInteger(TaskManagerOptions.NUM_TASK_SLOTS, jobGraph.getMaximumParallelism()); MiniClusterConfiguration cfg = new MiniClusterConfiguration.Builder()
.setConfiguration(configuration)
.setNumSlotsPerTaskManager(numSlotsPerTaskManager)
.build(); if (LOG.isInfoEnabled()) {
LOG.info("Running job on local embedded Flink mini cluster");
} MiniCluster miniCluster = new MiniCluster(cfg); try {
miniCluster.start();
configuration.setInteger(RestOptions.PORT, miniCluster.getRestAddress().get().getPort()); return miniCluster.executeJobBlocking(jobGraph);
}
finally {
transformations.clear();
miniCluster.close();
}
}

6.总结

  Flink的执行方式类似于管道,它借鉴了数据库的一些执行原理,实现了自己独特的执行方式。

7.展望

Stream涉及的内容还包括Watermark,window等概念,因篇幅限制,这篇仅介绍flink DataStream API使用及原理。

下篇将介绍Watermark,下下篇是windows窗口计算。

参考资料

【1】https://baijiahao.baidu.com/s?id=1625545704285534730&wfr=spider&for=pc

【2】https://blog.51cto.com/13654660/2087705

flink DataStream API使用及原理的更多相关文章

  1. Flink DataStream API Programming Guide

    Example Program The following program is a complete, working example of streaming window word count ...

  2. Flink DataStream API 中的多面手——Process Function详解

    之前熟悉的流处理API中的转换算子是无法访问事件的时间戳信息和水位线信息的.例如:MapFunction 这样的map转换算子就无法访问时间戳或者当前事件的时间. 然而,在一些场景下,又需要访问这些信 ...

  3. Flink DataStream API

    Data Sources 源是程序读取输入数据的位置.可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 将源添加到程序.Flink 有 ...

  4. flink dataset api使用及原理

    随着大数据技术在各行各业的广泛应用,要求能对海量数据进行实时处理的需求越来越多,同时数据处理的业务逻辑也越来越复杂,传统的批处理方式和早期的流式处理框架也越来越难以在延迟性.吞吐量.容错能力以及使用便 ...

  5. Flink Program Guide (2) -- 综述 (DataStream API编程指导 -- For Java)

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  6. Flink中API使用详细范例--window

    Flink Window机制范例实录: 什么是Window?有哪些用途? 1.window又可以分为基于时间(Time-based)的window 2.基于数量(Count-based)的window ...

  7. Flink-v1.12官方网站翻译-P016-Flink DataStream API Programming Guide

    Flink DataStream API编程指南 Flink中的DataStream程序是对数据流实现转换的常规程序(如过滤.更新状态.定义窗口.聚合).数据流最初是由各种来源(如消息队列.套接字流. ...

  8. Flink Program Guide (10) -- Savepoints (DataStream API编程指导 -- For Java)

    Savepoint 本文翻译自文档Streaming Guide / Savepoints ------------------------------------------------------ ...

  9. Flink Program Guide (8) -- Working with State :Fault Tolerance(DataStream API编程指导 -- For Java)

    Working with State 本文翻译自Streaming Guide/ Fault Tolerance / Working with State ---------------------- ...

随机推荐

  1. 比MD5 和HMAC还要安全的加密 - MD5 加时间戳

    //1.给一个字符串进行MD5加密 NSString *passKey = @"myapp"; passKey = [passKey md5String]; //2.对第一步中得到 ...

  2. 69.nodejs对mongodb数据库的增删改查操作

    转自:https://www.cnblogs.com/sexintercourse/p/6485381.html 首先要确保mongodb的正确安装,安装参照:http://docs.mongodb. ...

  3. Kinect 开发 —— 深度信息(二)

    转自(并致谢):http://www.cnblogs.com/yangecnu/archive/2012/04/05/KinectSDK_Depth_Image_Processing_Part2.ht ...

  4. POJ 题目1145/UVA题目112 Tree Summing(二叉树遍历)

    Tree Summing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8132   Accepted: 1949 Desc ...

  5. actionBar-进入界面闪烁问题解决

    问题分析: 主要是因为在开启一个应用的时候,当前界面并不是第一界面,在它之前,还有一个界面启动了,这个界面的唯一目的就是启动主界面,它目的不是显示.虽然如此,但是呢,这个界面的theme因为没有做统一 ...

  6. 37.Intellij IDEA解决GBK乱码

    转自:https://blog.csdn.net/myspacedemen/article/details/38401047 今天尝鲜装完Intellij IDEA以后,打开一个GBK编码的页面,华丽 ...

  7. Impala架构

    Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的 Hive+MapReduce批处理,而是通过使用与商用并行关系数据 ...

  8. ConcurrentHashMap实现原理--转载

    原文地址:http://ajax-xu.iteye.com/blog/1104649 ConcurrentHashMap是Java 5中支持高并发.高吞吐量的线程安全HashMap实现.在这之前我对C ...

  9. Catch Me If You ... Can't Do Otherwise--转载

    原文地址:https://dzone.com/articles/catch-me-if-you-cant-do-otherwise I don't know whether it's an anti- ...

  10. go语言函数作为参数传递

    go语言函数作为参数传递,目前给我的感觉几乎和C/C++一致.非常的灵活. import "fmt" import "time" func goFunc1(f ...