可逆方阵 A 的逆记为,A−1,需满足 AA−1=I。

在 BLAS 的各种实现中,一般都不会直接给出 matrix inverse 的直接实现,其实矩阵(方阵)的逆是可以通过 gemm()gesvd()操作得到。

实值可逆方阵 A,其 SVD 分解如下:

A⋅V=U⋅S

其中:

  • V,U 均为正交矩阵,

    {VVT=IUUT=I⇒{V−1=VTU−1=UT
  • S 为对角矩阵;

    • 因为 A 是可逆的,根据 SVD 的定义,S 的对角元素均是正数;

所以有:

A⋅V⋅S−1⋅U−1=I⇒A⋅V⋅S−1⋅UT=I

也即:

A−1=V⋅S−1⋅UT

references

gemm() 与 gesvd() 到矩阵求逆(inverse)(根据 SVD 分解和矩阵乘法求矩阵的逆)的更多相关文章

  1. SVD分解

    首先,有y = AX,将A看作是对X的线性变换 但是,如果有AX = λX,也就是,A对X的线性变换,就是令X的长度为原来的λ倍数. *说起线性变换,A肯定要是方阵,而且各列线性无关.(回想一下,A各 ...

  2. SVD分解的c++代码(Eigen 库)

    使用Eigen 库:进行svd分解,形如 A = U * S * VT. JacobiSVD<MatrixXd> svd(J, ComputeThinU | ComputeThinV); ...

  3. SVD分解的理解[转载]

    http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...

  4. 机器学习中的矩阵方法04:SVD 分解

    前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...

  5. SVD分解技术数学解释

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...

  6. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  7. SVD分解 解齐次线性方程组

    SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵 ...

  8. 机器学习之SVD分解

    一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...

  9. 矩阵的SVD分解

    转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都 ...

随机推荐

  1. A - Vile Grasshoppers

    Problem description The weather is fine today and hence it's high time to climb the nearby pine and ...

  2. Android进程与线程

    我们都知道,在操作系统中进程是OS分配资源的最小单位,而线程是执行任务的最小单位.一个进程可以拥有多个线程执行任务,这些线程可以共享该进程分配到的资源.当我们的app启动运行后,在该app没有其他组件 ...

  3. 文档控件NTKO OFFICE 详细使用说明之预览Excel文件(查看、编辑、保存回服务器)

    1.在线预览Excel文件 (1) 运行环境 ① 浏览器:支持IE7-IE11(平台版本还支持Chrome和Firefox) ② IE工具栏-Internet 选项:将www.ntko.com加入到浏 ...

  4. 在无任何报错的情况下 pagehelper.startpage分页无效问题

    问题原因:自从spring boot开始使用2.0x版本以上后,很多相应的依赖文件版本开始变化 该版本为spring-boot 1.4.1 <dependency> <groupId ...

  5. Nginx下修改php.ini后重新加载配置文件命令

    修改php.ini后 如,我的 php.ini 文件是放在 /etc/php.ini php 所在目录是 /www/Linux/php-5.2.17 修改 php.ini 后要用 php-fpm 来进 ...

  6. iphone通讯录的备份与恢复

    最近在做iOS系统通讯录备份到服务器,并且可以从服务器中下载备份文件恢复到手机的功能,部分实现细节记录如下. 将iphone系统通讯录生成.vcf文件 ABAddressBookRef address ...

  7. RxSwiftライブラリの作り方 〜Observer/Observable編〜

    RxSwiftライブラリの作り方をご紹介します.一つの記事ですべてを説明するのは非常に厳しいので.まず Observer や Observable といった基本的なコンポーネントとその周辺について.ひ ...

  8. 复习MySQL①创建数据库及数据表

    • 创建数据库:create database 数据库名称; – 例:创建名为test的测试数据库 create database test; • 查看创建好的数据库:show create data ...

  9. Project Euler 25 1000-digit Fibonacci number

    题意:在斐波那契数列( 1 ,1,2,3,5 ...... )中,第一个有1000位数字的是第几项? 思路:滚动数组 + 大数加法 /********************************* ...

  10. seliux(类似防火墙,限制root用户)

    注:如果在开发是不设置关闭,可能会出现很多不在预期内的效果 路径:/etc/selinux/config *修改(修改时拷贝对照) (拷贝):cp /etc/selinux/config /etc/s ...