题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费

首先想kruskal算法中,被加入的边已经是最优的了,所以当选择完套餐后,之前被丢弃的边也不会再进入最小生成树

然后就可以先求一次原图的最小生成树,保存下进入最小生成树的n-1条边

再枚举选择的套餐的情况,再求最小生成树,这里用的二进制法枚举 最后维护一个最小值就可以了

思路虽然看懂了,可是代码根本就写不出来,看着标程写的,最后还是改了那么久-- sad----------

 #include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) typedef long long LL;
const int INF = (<<)-;
const int mod=;
const int maxn=;
const int maxq=; int n;
int x[maxn],y[maxn],cost[maxn];
vector<int> subn[maxn]; int p[maxn];
int find(int x) {return p[x]!=x? p[x]=find(p[x]):x;} struct edge{
int u,v,d;
edge(int u,int v,int d):u(u),v(v),d(d) {}
bool operator <(const edge& rhs) const{
return d<rhs.d;}
}; int mst(int cnt,const vector<edge>& e,vector<edge>& used){
if(cnt==) return ;
int m=e.size();
int ans=;
used.clear();
for(int i=;i<m;i++){
int u=find(e[i].u),v=find(e[i].v);
int d=e[i].d;
if(u!=v){
p[u]=v;
ans+=d;
used.push_back(e[i]);
if(--cnt==) break;
}
}
return ans;
} int main(){
// freopen("in.txt","r",stdin);
// freopen("outttttttt.txt","w",stdout);
int T,q;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&q);
for(int i=;i<q;i++){
int cnt;
scanf("%d %d",&cnt,&cost[i]);
subn[i].clear();
while(cnt--){
int u;
scanf("%d",&u);
subn[i].push_back(u-);
}
} for(int i=;i<n;i++) scanf("%d %d",&x[i],&y[i]); vector<edge> e,need; for(int i=;i<n;i++)
for(int j=i+;j<n;j++){
int c=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
e.push_back(edge(i,j,c));
} for(int i=;i<n;i++) p[i]=i;
sort(e.begin(),e.end()); int ans=mst(n,e,need); for(int mask=;mask<(<<q);mask++){ for(int i=;i<n;i++) p[i]=i;
int cnt=n,c=; for(int i=;i<q;i++) if(mask & (<<i)){
c+=cost[i];
for(int j=;j<subn[i].size();j++){
int u=find(subn[i][j]),v=find(subn[i][]);
if(u!=v){p[u]=v;cnt--;}
}
}
vector<edge> dummy;
ans=min(ans,c+mst(cnt,need,dummy));
}
printf("%d\n",ans);
if(T) printf("\n");
}
return ;
}

UVa 1151 Buy or Build【最小生成树】的更多相关文章

  1. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  3. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  4. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  5. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  6. UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)

    题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...

  7. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  8. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  9. UVA 1151二进制枚举子集 + 最小生成树

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...

随机推荐

  1. 王立平--自己定义TitleBar

    效果: 1.自己定义titleBar的布局. <?xml version="1.0" encoding="utf-8"?> <Relative ...

  2. 判断QString是否为纯数字,查找自身最长重复子字符串

    1.判断QString是否为纯数字 bool IsDigitString(QString strSource) { bool bDigit = false; if (strSource.isEmpty ...

  3. mobiscroll手机端插件 好用(时间、日历、颜色)

    http://demo.mobiscroll.com/range/rangepickertime/ 下载地址:http://download.mobiscroll.com/trial#/ios/dat ...

  4. Win10使用VMware虚拟机安装ubuntu

    Win10专业版自带有虚拟机安装工具Hyper-V,也可以使用其他如VMware工具安装,也挺方便. 所需工具: 1.  VMware-workstation  下载链接: http://rj.bai ...

  5. 正睿NOIP赠送附加赛1

    T1:math 题目链接: http://zhengruioi.com/contest/156/problem/471 题解: 先讲讲我的乱搞做法.对于前面70%,我跑了背包.因为背包有后效性...我 ...

  6. 关闭WPS屏保

    WPS作为国产的Office,可谓是越来越流氓,无缘无故给你弄个屏保,不好好做Office就知道如何圈钱,或许这就是国内IT行业和国外的差距吧. 我用的WPS内部版本是:10.1.0.7311 如何查 ...

  7. rman备份工具简介

    RMAN工具简介: 备份的文件: 数据文件 归档日志 控制文件(当前控制文件) spfile 自动管理备份相关元数据 文件名称 完成备份的scn 以数据块为单位,只备份使用过的数据块(物理层面判断是否 ...

  8. 妙用$.extend

    在js中,我们有时需要复制一个对象的值,而不是复制它的引用的时候,可以使用jquery的$.extend方法,简单代码如下 <script> var a = { "name&qu ...

  9. split方法切割数组

    指定的字符串按"o"截取 当一个base64需要剪去前面的部分的时候 var params={ "imgJustBase64":this.zheng.split ...

  10. ES6学习笔记(二十)Module 的加载实现

    上一章介绍了模块的语法,本章介绍如何在浏览器和 Node 之中加载 ES6 模块,以及实际开发中经常遇到的一些问题(比如循环加载). 1.浏览器加载 传统方法 HTML 网页中,浏览器通过<sc ...