(转)Awsome Domain-Adaptation
Awsome Domain-Adaptation
2018-08-06 19:27:54
This blog is copied from: https://github.com/zhaoxin94/awsome-domain-adaptation
This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork.
Contents
- Papers
Papers
Overview
- Deep Visual Domain Adaptation: A Survey [arXiv 2018]
- Domain Adaptation for Visual Applications: A Comprehensive Survey [arXiv 2017]
Theory
- Analysis of Representations for Domain Adaptation [NIPS2006]
- A theory of learning from different domains [ML2010]
- Learning Bounds for Domain Adaptation [NIPS2007]
Unsupervised DA
Adversarial Methods
- M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning [arXiv 6 Jul 2018] [Pytorch(official)]
- Augmented Cyclic Adversarial Learning for Domain Adaptation [arXiv 1 Jul 2018]
- Factorized Adversarial Networks for Unsupervised Domain Adaptation [arXiv 4 Jun 2018]
- DiDA: Disentangled Synthesis for Domain Adaptation [arXiv 21 May 2018]
- Unsupervised Domain Adaptation with Adversarial Residual Transform Networks [arXiv 25 Apr 2018]
- Simple Domain Adaptation with Class Prediction Uncertainty Alignment [arXiv 12 Apr 2018]
- Causal Generative Domain Adaptation Networks [arXiv 28 Jun 2018]
- Conditional Adversarial Domain Adaptation [arXiv 10 Feb 2018 ]
- Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization [ECCV2018]
- Learning Semantic Representations for Unsupervised Domain Adaptation [ICML2018] [TensorFlow(Official)]
- CyCADA: Cycle-Consistent Adversarial Domain Adaptation [ICML2018] [Pytorch(official)]
- From source to target and back: Symmetric Bi-Directional Adaptive GAN [CVPR2018] [Keras(Official)] [Pytorch]
- Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation [CVPR2018]
- Maximum Classifier Discrepancy for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]
- Domain Generalization with Adversarial Feature Learning [CVPR2018]
- Adversarial Feature Augmentation for Unsupervised Domain Adaptation [CVPR2018] [TensorFlow(Official)]
- Duplex Generative Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]
- Generate To Adapt: Aligning Domains using Generative Adversarial Networks [CVPR2018] [Pytorch(Official)]
- Image to Image Translation for Domain Adaptation [CVPR2018]
- Unsupervised Domain Adaptation with Similarity Learning [CVPR2018]
- Conditional Generative Adversarial Network for Structured Domain Adaptation [CVPR2018]
- Collaborative and Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch]
- Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation [CVPR2018]
- Multi-Adversarial Domain Adaptation [AAAI2018] [Caffe(Official)]
- Wasserstein Distance Guided Representation Learning for Domain Adaptation [AAAI2018] [TensorFlow(official)]
- Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
- A DIRT-T Approach to Unsupervised Domain Adaptation [ICLR2018 Poster] [Tensorflow(Official)]
- Label Efficient Learning of Transferable Representations acrosss Domains and Tasks [NIPS2017] [Project]
- Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation [IROS2017]
- Adversarial Discriminative Domain Adaptation [CVPR2017] [Tensorflow(Official)] [Pytorch]
- Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks [CVPR2017] [Tensorflow(Official)][Pytorch]
- Domain Separation Networks [NIPS2016]
- Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation [ECCV2016]
- Domain-Adversarial Training of Neural Networks [JMLR2016]
- Unsupervised Domain Adaptation by Backpropagation [ICML2015] [Caffe(Official)] [Tensorflow] [Pytorch]
Network Methods
- Boosting Domain Adaptation by Discovering Latent Domains [CVPR2018]
- Residual Parameter Transfer for Deep Domain Adaptation [CVPR2018]
- Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation [AAAI2018]
- Deep CORAL: Correlation Alignment for Deep Domain Adaptation [ECCV2016]
- Deep Domain Confusion: Maximizing for Domain Invariance [Arxiv 2014]
Optimal Transport
- DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation [ECCV2018]
- Joint Distribution Optimal Transportation for Domain Adaptation [NIPS2017] [python] [Python Optimal Transport Library]
Incremental Methods
- Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
- Continuous Manifold based Adaptation for Evolving Visual Domains [CVPR2014]
Other Methods
- Unsupervised Domain Adaptation with Distribution Matching Machines [AAAI2018]
- Self-Ensembling for Visual Domain Adaptation [ICLR2018 Poster]
- Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation [ICLR2018 Poster]
- Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation [CVPR2018]
- Associative Domain Adaptation [ICCV2017] [TensorFlow]
- Learning Transferrable Representations for Unsupervised Domain Adaptation [NIPS2016]
Zero-shot DA
- Zero-Shot Deep Domain Adaptation [ECCV2018]
Few-shot DA
Image-to-Image Translation
- JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets [ICML2018] [TensorFlow(Official)]
- Multimodal Unsupervised Image-to-Image Translation [arXiv] [Pytorch(Official)]
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [CVPR2018][Pytorch(Official)]
- Conditional Image-to-Image Translation [CVPR2018]
- Toward Multimodal Image-to-Image Translation [NIPS2017] [Project] [Pyotorch(Official)]
- Unsupervised Image-to-Image Translation Networks [NIPS2017] [Pytorch(Official)]
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [ICCV2017(extended version)][Pytorch(Official)]
- Image-to-Image Translation with Conditional Adversarial Nets [CVPR2017] [Project] [Pytorch(Official)]
- Learning to Discover Cross-Domain Relations with Generative Adversarial Networks [ICML2017] [Pytorch(Official)]
- Unsupervised Cross-Domain Image Generation [ICLR2017 Poster] [TensorFlow]
- Coupled Generative Adversarial Networks [NIPS2016] [Poytorch(Official)]
Open Set DA
- Learning Factorized Representations for Open-set Domain Adaptation [arXiv 31 May 2018]
- Open Set Domain Adaptation by Backpropagation [ECCV2018]
- Open Set Domain Adaptation [ICCV2017]
Partial DA
- Partial Adversarial Domain Adaptation [ECCV2018(not released)] [Pytorch(Official)]
- Importance Weighted Adversarial Nets for Partial Domain Adaptation [CVPR2018]
- Partial Transfer Learning with Selective Adversarial Networks [CVPR2018][paper weekly] [Pytorch(Official) & Caffe(official)]
Multi source DA
- Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift [CVPR2018]
Applications
Object Detection
- Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation [CVPR2018]
- Domain Adaptive Faster R-CNN for Object Detection in the Wild [CVPR2018]
Semantic Segmentation
- Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation [CVPR2018]
- Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes [ICCV2017]
Person Re-identification
- Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [CVPR2018]
- Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [CVPR2018]
Others
- Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer [CVPR2018]
Benchmarks
- Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adaptation [arXiv 26 Jun] [Project]
(转)Awsome Domain-Adaptation的更多相关文章
- 关于模式识别中的domain generalization 和 domain adaptation
今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...
- 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes
paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...
- Domain Adaptation (3)论文翻译
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...
- Domain Adaptation (1)选题讲解
1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...
- 【论文笔记】Domain Adaptation via Transfer Component Analysis
论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...
- 域适应(Domain adaptation)
定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...
- Deep Transfer Network: Unsupervised Domain Adaptation
转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...
- Domain Adaptation论文笔记
领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...
- Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)
domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...
- Unsupervised Domain Adaptation by Backpropagation
目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...
随机推荐
- log4j日志输出使用_1
转自https://www.cnblogs.com/sky230/p/5759831.html Log4j是帮助开发人员进行日志输出管理的API类库.它最重要的特点就可以配置文件灵活的设置日志信息的优 ...
- AtCoder Beginner Contest 085(ABCD)
A - Already 2018 题目链接:https://abc085.contest.atcoder.jp/tasks/abc085_a Time limit : 2sec / Memory li ...
- win10 校园宽带连接不上的解决办法(错误720、“以太网”没有有效的ip设置)
遇到的问题如下图所示: 插上宽带后,查看以太网状态显示如下: 创建新连接宽带(PPPoE)(R)后,连接失败,错误为720,显示如下: 以太网网络诊断后,结果显示“以太网”没有有效的Ip设置,如下图所 ...
- java之异常统一处理
spring-mvc.xml <!-- aop --> <aop:aspectj-autoproxy/> <beans:bean id="controllerA ...
- JavaScript 中禁止用户右键菜单,复制,选取,Ctrl,Alt,Shift. 获取宽高,清除浮动
//禁用右键菜单 document.oncontextmenu = function(){ event.returnValue = false; } //禁用选取内容 document.onselec ...
- 3D模型文字动画
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- Mysql初级第一天(wangyun)
SQL Structure Query Language 结构化查询语言 数据库DataBase 产品: 1:小型数据库 Ms Acssess (Office) SQLite 移动设备 2:中型数据库 ...
- 如何通过 Vue+Webpack 来做通用的前端组件化架构设计
目录: 1. 架构选型 2. 架构目录介绍 3. 架构说明 4. 招聘消息 目前如果要说比较流行的前端架构哪家强,屈指可数:reactjs.angularjs.emberj ...
- 深入浅出TCP之半关闭与CLOSE_WAIT
转自:https://www.2cto.com/net/201309/243585.html(相关链接) 深入浅出TCP之半关闭与CLOSE_WAIT 终止一个连接要经过4次握手.这由TCP的半关闭( ...
- amqp 抓包
1. wireshark 2. tcpick -yR -r file.name