Awsome Domain-Adaptation

2018-08-06 19:27:54

This blog is copied from: https://github.com/zhaoxin94/awsome-domain-adaptation

This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork.

Contents

Papers

Overview

  • Deep Visual Domain Adaptation: A Survey [arXiv 2018]
  • Domain Adaptation for Visual Applications: A Comprehensive Survey [arXiv 2017]

Theory

  • Analysis of Representations for Domain Adaptation [NIPS2006]
  • A theory of learning from different domains [ML2010]
  • Learning Bounds for Domain Adaptation [NIPS2007]

Unsupervised DA

Adversarial Methods

Network Methods

  • Boosting Domain Adaptation by Discovering Latent Domains [CVPR2018]
  • Residual Parameter Transfer for Deep Domain Adaptation [CVPR2018]
  • Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation [AAAI2018]
  • Deep CORAL: Correlation Alignment for Deep Domain Adaptation [ECCV2016]
  • Deep Domain Confusion: Maximizing for Domain Invariance [Arxiv 2014]

Optimal Transport

Incremental Methods

  • Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
  • Continuous Manifold based Adaptation for Evolving Visual Domains [CVPR2014]

Other Methods

  • Unsupervised Domain Adaptation with Distribution Matching Machines [AAAI2018]
  • Self-Ensembling for Visual Domain Adaptation [ICLR2018 Poster]
  • Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation [ICLR2018 Poster]
  • Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation [CVPR2018]
  • Associative Domain Adaptation [ICCV2017] [TensorFlow]
  • Learning Transferrable Representations for Unsupervised Domain Adaptation [NIPS2016]

Zero-shot DA

Few-shot DA

Image-to-Image Translation

Open Set DA

Partial DA

Multi source DA

  • Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift [CVPR2018]

Applications

Object Detection

  • Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation [CVPR2018]
  • Domain Adaptive Faster R-CNN for Object Detection in the Wild [CVPR2018]

Semantic Segmentation

  • Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation [CVPR2018]
  • Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes [ICCV2017]

Person Re-identification

  • Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [CVPR2018]
  • Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [CVPR2018]

Others

  • Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer [CVPR2018]

Benchmarks

(转)Awsome Domain-Adaptation的更多相关文章

  1. 关于模式识别中的domain generalization 和 domain adaptation

    今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...

  2. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  3. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  4. Domain Adaptation (1)选题讲解

    1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...

  5. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  6. 域适应(Domain adaptation)

    定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...

  7. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  8. Domain Adaptation论文笔记

    领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...

  9. Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)

    domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...

  10. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

随机推荐

  1. Vue系列之 => vue组件创建

    创建方式 一 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

  2. map 的用法

    #include<iostream> #include<map> #include<string> #define s second #define f first ...

  3. Python 7 -- 文件存储数据

    上一节总结了一个基本web应用的代码,这一节主要讲用户访问的数据记录在log文件中,并显示在页面上. 这节步骤: 按以下目录建好相应的文件夹及内容 webapp|----vsearch4web.py ...

  4. 文件格式(图像 IO 14.3)

    文件格式 图片加载性能取决于加载大图的时间和解压小图时间的权衡.很多苹果的文档都说PNG是iOS所有图片加载的最好格式.但这是极度误导的过时信息了. PNG图片使用的无损压缩算法可以比使用JPEG的图 ...

  5. python 在列表,元组,字典变量前加*号

    废话不说,直接上代码(可能很多人以前不知道有这种方法): a=[1,2,3]b=(1,2,3)c={1:"a",2:"b",3:"c"}pr ...

  6. 高性能NIO框架Netty入门篇

    http://cxytiandi.com/blog/detail/17345 Netty介绍 Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具 ...

  7. 典型 python 小练习

    #格式化输出 3方式a=input('user:').strip()print('%s'%a) #%s 占位符a1=[1,2,3]print(f'333{a1}早') #法二print('ss{0}k ...

  8. input 的radio checkbox 和 select 相关操作

    1  select 获取和设置值,以及onchange事件 1下拉框option没有checked事件 可通过select 的 onchange事件进行监控,以获取其值 <select name ...

  9. 大数据自学3-Windows客户端DbVisualizer/SQuirreL配置连接hive

    前面已经学习了将数据从Sql Server导入到Hive DB,并在Hue的Web界面可以查询,接下来是配置客户端工具直接连Hive数据库,常用的有DbVisualizer.SQuirreL SQL ...

  10. P1383 高级打字机

    P1383 高级打字机 主席树 一发主席树解决. 插入操作十分显然. 撤销操作复制前面的版本就行. 询问操作十分显然. #include<iostream> #include<cst ...