Awsome Domain-Adaptation

2018-08-06 19:27:54

This blog is copied from: https://github.com/zhaoxin94/awsome-domain-adaptation

This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork.

Contents

Papers

Overview

  • Deep Visual Domain Adaptation: A Survey [arXiv 2018]
  • Domain Adaptation for Visual Applications: A Comprehensive Survey [arXiv 2017]

Theory

  • Analysis of Representations for Domain Adaptation [NIPS2006]
  • A theory of learning from different domains [ML2010]
  • Learning Bounds for Domain Adaptation [NIPS2007]

Unsupervised DA

Adversarial Methods

Network Methods

  • Boosting Domain Adaptation by Discovering Latent Domains [CVPR2018]
  • Residual Parameter Transfer for Deep Domain Adaptation [CVPR2018]
  • Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation [AAAI2018]
  • Deep CORAL: Correlation Alignment for Deep Domain Adaptation [ECCV2016]
  • Deep Domain Confusion: Maximizing for Domain Invariance [Arxiv 2014]

Optimal Transport

Incremental Methods

  • Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
  • Continuous Manifold based Adaptation for Evolving Visual Domains [CVPR2014]

Other Methods

  • Unsupervised Domain Adaptation with Distribution Matching Machines [AAAI2018]
  • Self-Ensembling for Visual Domain Adaptation [ICLR2018 Poster]
  • Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation [ICLR2018 Poster]
  • Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation [CVPR2018]
  • Associative Domain Adaptation [ICCV2017] [TensorFlow]
  • Learning Transferrable Representations for Unsupervised Domain Adaptation [NIPS2016]

Zero-shot DA

Few-shot DA

Image-to-Image Translation

Open Set DA

Partial DA

Multi source DA

  • Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift [CVPR2018]

Applications

Object Detection

  • Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation [CVPR2018]
  • Domain Adaptive Faster R-CNN for Object Detection in the Wild [CVPR2018]

Semantic Segmentation

  • Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation [CVPR2018]
  • Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes [ICCV2017]

Person Re-identification

  • Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [CVPR2018]
  • Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [CVPR2018]

Others

  • Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer [CVPR2018]

Benchmarks

(转)Awsome Domain-Adaptation的更多相关文章

  1. 关于模式识别中的domain generalization 和 domain adaptation

    今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...

  2. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  3. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  4. Domain Adaptation (1)选题讲解

    1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...

  5. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  6. 域适应(Domain adaptation)

    定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...

  7. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  8. Domain Adaptation论文笔记

    领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...

  9. Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)

    domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...

  10. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

随机推荐

  1. html5-盒子模型

    /*div{background: green;width: 60%;padding-top: 10px;padding-right: 20px;padding-bottom: 30px;paddin ...

  2. html5-特殊符号的使用

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  3. hdu5290树形dp

    题意 给了n个点的数 每个点有一个w[i]权值,如果你选择了i这个点那么距离i这个点距离为w[i]的点将被除去,最后问 选则尽量少的点把这n个点全部删除 1<=n<=100000, 0&l ...

  4. rabbitmq和redis用作消息队列的区别

    将redis发布订阅模式用做消息队列和rabbitmq的区别: 可靠性redis :没有相应的机制保证消息的可靠消费,如果发布者发布一条消息,而没有对应的订阅者的话,这条消息将丢失,不会存在内存中:r ...

  5. usb通信小结

    2010-07-25 16:52:00 目前了解了usb通信层面的一些基础知识如下.如果有空还要再了解hid报告描述符及协议的数据包波形. 一,USB的一些基本概念 1. 管道(Pipe) 是主机和设 ...

  6. python shutil模块简单介绍

    python shutil模块简单介绍 简介 shutil模块提供了大量的文件的高级操作.特别针对文件拷贝和删除,主要功能为目录和文件操作以及压缩操作. shutil 模块方法: copy(src, ...

  7. python中的logger模块

    logger 提供了应用程序可以直接使用的接口handler将(logger创建的)日志记录发送到合适的目的输出filter提供了细度设备来决定输出哪条日志记录formatter决定日志记录的最终输出 ...

  8. LINUX部署SVN服务器

    1.安装SVN服务端 yum install -y subversion 2.创建svn版本库 mkdir -p /data/svn/myproject svnadmin create /data/s ...

  9. 第三节 深入JavaScript

    函数的返回值:(把函数体内的数据传出到函数体外) 什么是函数的返回值:函数执行结果.可以没有返回值 一种函数应该只返回一种类型的值 函数传参:(与函数返回值相反,把外面数据传入函数体内) 可变参(不定 ...

  10. 笔面试复习(spring常用.jar包/事务/控制反转/bean对象管理和创建/springMVC工作原理/sql查询)

    ###spring常用jar包1.spring.jar是包含有完整发布模块的单个jar包.2.org.springframework.aop包含在应用中使用Spring的AOP特性时所需要的类.3.o ...