Awsome Domain-Adaptation

2018-08-06 19:27:54

This blog is copied from: https://github.com/zhaoxin94/awsome-domain-adaptation

This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork.

Contents

Papers

Overview

  • Deep Visual Domain Adaptation: A Survey [arXiv 2018]
  • Domain Adaptation for Visual Applications: A Comprehensive Survey [arXiv 2017]

Theory

  • Analysis of Representations for Domain Adaptation [NIPS2006]
  • A theory of learning from different domains [ML2010]
  • Learning Bounds for Domain Adaptation [NIPS2007]

Unsupervised DA

Adversarial Methods

Network Methods

  • Boosting Domain Adaptation by Discovering Latent Domains [CVPR2018]
  • Residual Parameter Transfer for Deep Domain Adaptation [CVPR2018]
  • Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation [AAAI2018]
  • Deep CORAL: Correlation Alignment for Deep Domain Adaptation [ECCV2016]
  • Deep Domain Confusion: Maximizing for Domain Invariance [Arxiv 2014]

Optimal Transport

Incremental Methods

  • Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
  • Continuous Manifold based Adaptation for Evolving Visual Domains [CVPR2014]

Other Methods

  • Unsupervised Domain Adaptation with Distribution Matching Machines [AAAI2018]
  • Self-Ensembling for Visual Domain Adaptation [ICLR2018 Poster]
  • Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation [ICLR2018 Poster]
  • Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation [CVPR2018]
  • Associative Domain Adaptation [ICCV2017] [TensorFlow]
  • Learning Transferrable Representations for Unsupervised Domain Adaptation [NIPS2016]

Zero-shot DA

Few-shot DA

Image-to-Image Translation

Open Set DA

Partial DA

Multi source DA

  • Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift [CVPR2018]

Applications

Object Detection

  • Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation [CVPR2018]
  • Domain Adaptive Faster R-CNN for Object Detection in the Wild [CVPR2018]

Semantic Segmentation

  • Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation [CVPR2018]
  • Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes [ICCV2017]

Person Re-identification

  • Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [CVPR2018]
  • Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [CVPR2018]

Others

  • Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer [CVPR2018]

Benchmarks

(转)Awsome Domain-Adaptation的更多相关文章

  1. 关于模式识别中的domain generalization 和 domain adaptation

    今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...

  2. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  3. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  4. Domain Adaptation (1)选题讲解

    1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...

  5. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  6. 域适应(Domain adaptation)

    定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...

  7. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  8. Domain Adaptation论文笔记

    领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...

  9. Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)

    domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...

  10. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

随机推荐

  1. log4j日志输出使用_1

    转自https://www.cnblogs.com/sky230/p/5759831.html Log4j是帮助开发人员进行日志输出管理的API类库.它最重要的特点就可以配置文件灵活的设置日志信息的优 ...

  2. AtCoder Beginner Contest 085(ABCD)

    A - Already 2018 题目链接:https://abc085.contest.atcoder.jp/tasks/abc085_a Time limit : 2sec / Memory li ...

  3. win10 校园宽带连接不上的解决办法(错误720、“以太网”没有有效的ip设置)

    遇到的问题如下图所示: 插上宽带后,查看以太网状态显示如下: 创建新连接宽带(PPPoE)(R)后,连接失败,错误为720,显示如下: 以太网网络诊断后,结果显示“以太网”没有有效的Ip设置,如下图所 ...

  4. java之异常统一处理

    spring-mvc.xml <!-- aop --> <aop:aspectj-autoproxy/> <beans:bean id="controllerA ...

  5. JavaScript 中禁止用户右键菜单,复制,选取,Ctrl,Alt,Shift. 获取宽高,清除浮动

    //禁用右键菜单 document.oncontextmenu = function(){ event.returnValue = false; } //禁用选取内容 document.onselec ...

  6. 3D模型文字动画

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  7. Mysql初级第一天(wangyun)

    SQL Structure Query Language 结构化查询语言 数据库DataBase 产品: 1:小型数据库 Ms Acssess (Office) SQLite 移动设备 2:中型数据库 ...

  8. 如何通过 Vue+Webpack 来做通用的前端组件化架构设计

    目录:   1. 架构选型     2. 架构目录介绍     3. 架构说明     4. 招聘消息 目前如果要说比较流行的前端架构哪家强,屈指可数:reactjs.angularjs.emberj ...

  9. 深入浅出TCP之半关闭与CLOSE_WAIT

    转自:https://www.2cto.com/net/201309/243585.html(相关链接) 深入浅出TCP之半关闭与CLOSE_WAIT 终止一个连接要经过4次握手.这由TCP的半关闭( ...

  10. amqp 抓包

    1. wireshark 2. tcpick -yR -r  file.name