(转)Awsome Domain-Adaptation
Awsome Domain-Adaptation
2018-08-06 19:27:54
This blog is copied from: https://github.com/zhaoxin94/awsome-domain-adaptation
This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork.
Contents
- Papers
Papers
Overview
- Deep Visual Domain Adaptation: A Survey [arXiv 2018]
- Domain Adaptation for Visual Applications: A Comprehensive Survey [arXiv 2017]
Theory
- Analysis of Representations for Domain Adaptation [NIPS2006]
- A theory of learning from different domains [ML2010]
- Learning Bounds for Domain Adaptation [NIPS2007]
Unsupervised DA
Adversarial Methods
- M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning [arXiv 6 Jul 2018] [Pytorch(official)]
- Augmented Cyclic Adversarial Learning for Domain Adaptation [arXiv 1 Jul 2018]
- Factorized Adversarial Networks for Unsupervised Domain Adaptation [arXiv 4 Jun 2018]
- DiDA: Disentangled Synthesis for Domain Adaptation [arXiv 21 May 2018]
- Unsupervised Domain Adaptation with Adversarial Residual Transform Networks [arXiv 25 Apr 2018]
- Simple Domain Adaptation with Class Prediction Uncertainty Alignment [arXiv 12 Apr 2018]
- Causal Generative Domain Adaptation Networks [arXiv 28 Jun 2018]
- Conditional Adversarial Domain Adaptation [arXiv 10 Feb 2018 ]
- Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization [ECCV2018]
- Learning Semantic Representations for Unsupervised Domain Adaptation [ICML2018] [TensorFlow(Official)]
- CyCADA: Cycle-Consistent Adversarial Domain Adaptation [ICML2018] [Pytorch(official)]
- From source to target and back: Symmetric Bi-Directional Adaptive GAN [CVPR2018] [Keras(Official)] [Pytorch]
- Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation [CVPR2018]
- Maximum Classifier Discrepancy for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]
- Domain Generalization with Adversarial Feature Learning [CVPR2018]
- Adversarial Feature Augmentation for Unsupervised Domain Adaptation [CVPR2018] [TensorFlow(Official)]
- Duplex Generative Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]
- Generate To Adapt: Aligning Domains using Generative Adversarial Networks [CVPR2018] [Pytorch(Official)]
- Image to Image Translation for Domain Adaptation [CVPR2018]
- Unsupervised Domain Adaptation with Similarity Learning [CVPR2018]
- Conditional Generative Adversarial Network for Structured Domain Adaptation [CVPR2018]
- Collaborative and Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch]
- Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation [CVPR2018]
- Multi-Adversarial Domain Adaptation [AAAI2018] [Caffe(Official)]
- Wasserstein Distance Guided Representation Learning for Domain Adaptation [AAAI2018] [TensorFlow(official)]
- Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
- A DIRT-T Approach to Unsupervised Domain Adaptation [ICLR2018 Poster] [Tensorflow(Official)]
- Label Efficient Learning of Transferable Representations acrosss Domains and Tasks [NIPS2017] [Project]
- Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation [IROS2017]
- Adversarial Discriminative Domain Adaptation [CVPR2017] [Tensorflow(Official)] [Pytorch]
- Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks [CVPR2017] [Tensorflow(Official)][Pytorch]
- Domain Separation Networks [NIPS2016]
- Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation [ECCV2016]
- Domain-Adversarial Training of Neural Networks [JMLR2016]
- Unsupervised Domain Adaptation by Backpropagation [ICML2015] [Caffe(Official)] [Tensorflow] [Pytorch]
Network Methods
- Boosting Domain Adaptation by Discovering Latent Domains [CVPR2018]
- Residual Parameter Transfer for Deep Domain Adaptation [CVPR2018]
- Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation [AAAI2018]
- Deep CORAL: Correlation Alignment for Deep Domain Adaptation [ECCV2016]
- Deep Domain Confusion: Maximizing for Domain Invariance [Arxiv 2014]
Optimal Transport
- DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation [ECCV2018]
- Joint Distribution Optimal Transportation for Domain Adaptation [NIPS2017] [python] [Python Optimal Transport Library]
Incremental Methods
- Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
- Continuous Manifold based Adaptation for Evolving Visual Domains [CVPR2014]
Other Methods
- Unsupervised Domain Adaptation with Distribution Matching Machines [AAAI2018]
- Self-Ensembling for Visual Domain Adaptation [ICLR2018 Poster]
- Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation [ICLR2018 Poster]
- Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation [CVPR2018]
- Associative Domain Adaptation [ICCV2017] [TensorFlow]
- Learning Transferrable Representations for Unsupervised Domain Adaptation [NIPS2016]
Zero-shot DA
- Zero-Shot Deep Domain Adaptation [ECCV2018]
Few-shot DA
Image-to-Image Translation
- JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets [ICML2018] [TensorFlow(Official)]
- Multimodal Unsupervised Image-to-Image Translation [arXiv] [Pytorch(Official)]
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [CVPR2018][Pytorch(Official)]
- Conditional Image-to-Image Translation [CVPR2018]
- Toward Multimodal Image-to-Image Translation [NIPS2017] [Project] [Pyotorch(Official)]
- Unsupervised Image-to-Image Translation Networks [NIPS2017] [Pytorch(Official)]
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [ICCV2017(extended version)][Pytorch(Official)]
- Image-to-Image Translation with Conditional Adversarial Nets [CVPR2017] [Project] [Pytorch(Official)]
- Learning to Discover Cross-Domain Relations with Generative Adversarial Networks [ICML2017] [Pytorch(Official)]
- Unsupervised Cross-Domain Image Generation [ICLR2017 Poster] [TensorFlow]
- Coupled Generative Adversarial Networks [NIPS2016] [Poytorch(Official)]
Open Set DA
- Learning Factorized Representations for Open-set Domain Adaptation [arXiv 31 May 2018]
- Open Set Domain Adaptation by Backpropagation [ECCV2018]
- Open Set Domain Adaptation [ICCV2017]
Partial DA
- Partial Adversarial Domain Adaptation [ECCV2018(not released)] [Pytorch(Official)]
- Importance Weighted Adversarial Nets for Partial Domain Adaptation [CVPR2018]
- Partial Transfer Learning with Selective Adversarial Networks [CVPR2018][paper weekly] [Pytorch(Official) & Caffe(official)]
Multi source DA
- Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift [CVPR2018]
Applications
Object Detection
- Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation [CVPR2018]
- Domain Adaptive Faster R-CNN for Object Detection in the Wild [CVPR2018]
Semantic Segmentation
- Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation [CVPR2018]
- Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes [ICCV2017]
Person Re-identification
- Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [CVPR2018]
- Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [CVPR2018]
Others
- Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer [CVPR2018]
Benchmarks
- Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adaptation [arXiv 26 Jun] [Project]
(转)Awsome Domain-Adaptation的更多相关文章
- 关于模式识别中的domain generalization 和 domain adaptation
今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...
- 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes
paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...
- Domain Adaptation (3)论文翻译
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...
- Domain Adaptation (1)选题讲解
1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...
- 【论文笔记】Domain Adaptation via Transfer Component Analysis
论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...
- 域适应(Domain adaptation)
定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...
- Deep Transfer Network: Unsupervised Domain Adaptation
转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...
- Domain Adaptation论文笔记
领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...
- Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)
domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...
- Unsupervised Domain Adaptation by Backpropagation
目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...
随机推荐
- Vue系列之 => vue组件创建
创建方式 一 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- map 的用法
#include<iostream> #include<map> #include<string> #define s second #define f first ...
- Python 7 -- 文件存储数据
上一节总结了一个基本web应用的代码,这一节主要讲用户访问的数据记录在log文件中,并显示在页面上. 这节步骤: 按以下目录建好相应的文件夹及内容 webapp|----vsearch4web.py ...
- 文件格式(图像 IO 14.3)
文件格式 图片加载性能取决于加载大图的时间和解压小图时间的权衡.很多苹果的文档都说PNG是iOS所有图片加载的最好格式.但这是极度误导的过时信息了. PNG图片使用的无损压缩算法可以比使用JPEG的图 ...
- python 在列表,元组,字典变量前加*号
废话不说,直接上代码(可能很多人以前不知道有这种方法): a=[1,2,3]b=(1,2,3)c={1:"a",2:"b",3:"c"}pr ...
- 高性能NIO框架Netty入门篇
http://cxytiandi.com/blog/detail/17345 Netty介绍 Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具 ...
- 典型 python 小练习
#格式化输出 3方式a=input('user:').strip()print('%s'%a) #%s 占位符a1=[1,2,3]print(f'333{a1}早') #法二print('ss{0}k ...
- input 的radio checkbox 和 select 相关操作
1 select 获取和设置值,以及onchange事件 1下拉框option没有checked事件 可通过select 的 onchange事件进行监控,以获取其值 <select name ...
- 大数据自学3-Windows客户端DbVisualizer/SQuirreL配置连接hive
前面已经学习了将数据从Sql Server导入到Hive DB,并在Hue的Web界面可以查询,接下来是配置客户端工具直接连Hive数据库,常用的有DbVisualizer.SQuirreL SQL ...
- P1383 高级打字机
P1383 高级打字机 主席树 一发主席树解决. 插入操作十分显然. 撤销操作复制前面的版本就行. 询问操作十分显然. #include<iostream> #include<cst ...