S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 9829    Accepted Submission(s): 4038

Problem Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Input

Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.

Output

For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.

Sample Input

2 2 5//两种取法,只能取2或5个

3//例数

2 5 12//例一:两堆石子个数分别为5和12

3 2 4 7

4 2 3 7 12

5 1 2 3 4 5//五种取法。。。。

3

2 5 12

3 2 4 7

4 2 3 7 12

0

Sample Output

LWW

WWL

#include<iostream>
#include<string.h>
using namespace std;
const int N=10001;
int k,sg[N],fa[111];
void getsg(int n)
{
bool mex[N];
for(int i=1;i<=n;i++)
{
memset(mex,0,sizeof(mex));
for(int j=0;j<k;j++)
if(i>=fa[j])
mex[sg[i-fa[j]]]=1;
for(int j=0;;j++)
if(!mex[j])
{
sg[i]=j;
break;
}
}
}
int main()
{
int m;
while(~scanf("%d",&k)&&k)
{
memset(fa,0,sizeof(fa));
for(int i=0;i<k;i++)
scanf("%d",&fa[i]);
getsg(N);
char s[111];
scanf("%d",&m);
for(int i=0;i<m;i++)
{
int h,l,sum=0;
scanf("%d",&l);
while(l--)
{
scanf("%d",&h);
sum^=sg[h];
}
if(sum)
s[i]='W';
else s[i]='L';
}
s[m]='\0';
printf("%s\n",s);
}
return 0;
}

HDU1536 S-Nim(sg函数变换规则)的更多相关文章

  1. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU1536&&POJ2960 S-Nim(SG函数博弈)

    S-Nim Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  3. 多校6 1003 HDU5795 A Simple Nim (sg函数)

    思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...

  4. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

  5. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  6. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

  7. HDU 3032 Nim or not Nim?(sg函数)

    题目链接 暴力出来,竟然眼花了以为sg(i) = i啊....看表要认真啊!!! #include <cstdio> #include <cstring> #include & ...

  8. S-Nim POJ - 2960 Nim + SG函数

    Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...

  9. [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数

    Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...

随机推荐

  1. 使用ajax实现form表单的submit事件

    需求:如题,需要在登录页面使用ajax提交请求,并在本页面返回请求信息. 主要部分jS如下: //提交表单$("#loginForm").submit(function(){ va ...

  2. CentOS6.8下安装redis并配置开机自启动

    参考资料:http://www.bubuko.com/infodetail-1006383.html   http://www.cnblogs.com/skyessay/p/6433349.html ...

  3. SQL语句(三)数据表的修改

    数据表的修改 1. 创建实验表people people CREATE TABLE people ( name ), gender ), birthday ) ) 2.修改表 ALTER TABLE ...

  4. Linux_安装

    总结:    分区-->格式化-->起一个设备文件名(逻辑分区一定从5开始)-->指定挂载点(必须是空的目录名称作为盘幅)

  5. DotNetBar SuperTabStrip带图标时调整为指定字号的最小宽度

    SuperTabStrip带图标时很占空间,需要调整1.整体设置 2.单个Tab设置

  6. The android command is deprecated

    新版的SDK tools中的android命令已经不支持 android create project,用起来很不顺手. The "android" command is depr ...

  7. luogu P4082 [USACO17DEC]Push a Box

    传送门 一个人推箱子,和之前的华容道中的棋子移动有异曲同工之妙,因为每次可以让人走到箱子的其他方向上,或者推一下箱子 所以状态可以设成\(f_{i,j,k}\),即箱子在\((i,j)\),人在\(k ...

  8. L - The Shortest Path Gym - 101498L (dfs式spfa判断负环)

    题目链接:https://cn.vjudge.net/contest/283066#problem/L 题目大意:T组测试样例,n个点,m条边,每一条边的信息是起点,终点,边权.问你是不是存在负环,如 ...

  9. 课程2:《黑马程序员_Java基础视频-深入浅出精华版》-视频列表-

    \day01\avi\01.01_计算机基础(计算机概述).avi; \day01\avi\01.02_计算机基础(计算机硬件和软件概述).avi; \day01\avi\01.03_计算机基础(软件 ...

  10. 2017-2018-2 20155303『网络对抗技术』Exp4:恶意代码分析

    2017-2018-2 20155303『网络对抗技术』Exp4:恶意代码分析 --------CONTENTS-------- 一.原理与实践说明 1.实践目标 2.实践内容概述 3.基础问题回答 ...