S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 9829    Accepted Submission(s): 4038

Problem Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Input

Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.

Output

For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.

Sample Input

2 2 5//两种取法,只能取2或5个

3//例数

2 5 12//例一:两堆石子个数分别为5和12

3 2 4 7

4 2 3 7 12

5 1 2 3 4 5//五种取法。。。。

3

2 5 12

3 2 4 7

4 2 3 7 12

0

Sample Output

LWW

WWL

#include<iostream>
#include<string.h>
using namespace std;
const int N=10001;
int k,sg[N],fa[111];
void getsg(int n)
{
bool mex[N];
for(int i=1;i<=n;i++)
{
memset(mex,0,sizeof(mex));
for(int j=0;j<k;j++)
if(i>=fa[j])
mex[sg[i-fa[j]]]=1;
for(int j=0;;j++)
if(!mex[j])
{
sg[i]=j;
break;
}
}
}
int main()
{
int m;
while(~scanf("%d",&k)&&k)
{
memset(fa,0,sizeof(fa));
for(int i=0;i<k;i++)
scanf("%d",&fa[i]);
getsg(N);
char s[111];
scanf("%d",&m);
for(int i=0;i<m;i++)
{
int h,l,sum=0;
scanf("%d",&l);
while(l--)
{
scanf("%d",&h);
sum^=sg[h];
}
if(sum)
s[i]='W';
else s[i]='L';
}
s[m]='\0';
printf("%s\n",s);
}
return 0;
}

HDU1536 S-Nim(sg函数变换规则)的更多相关文章

  1. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU1536&&POJ2960 S-Nim(SG函数博弈)

    S-Nim Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  3. 多校6 1003 HDU5795 A Simple Nim (sg函数)

    思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...

  4. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

  5. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  6. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

  7. HDU 3032 Nim or not Nim?(sg函数)

    题目链接 暴力出来,竟然眼花了以为sg(i) = i啊....看表要认真啊!!! #include <cstdio> #include <cstring> #include & ...

  8. S-Nim POJ - 2960 Nim + SG函数

    Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...

  9. [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数

    Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...

随机推荐

  1. 微信现金红包 python

    微信现金红包发送接口,好像没法限制一个用户一个活动只能领取一次红包,在调用红包接口上,自己做了限制 REDPACK_RECORD 建表sql -- Create table create table ...

  2. JAVA泛型中的类型擦除及为什么不支持泛型数组

    一,数组的协变性(covariant array type)及集合的非协变性 设有Circle类和Square类继承自Shape类. 关于数组的协变性,看代码: public static doubl ...

  3. This page is about building Firefox Desktop

    This page is about building Firefox Desktop The Mozilla build system, like the rest of the Mozilla c ...

  4. 字体选择框QFontComboBox

    self.combobox_2 = QFontComboBox(self)  # 实例化字体列表框 combobox.currentFont()  返回字体选择框中当前的字体 self.combobo ...

  5. JavaScript之函数调用与被调用的上下文对象this

    不同的调用机制决定了函数上下文对象的不同: 1.  作为普通函数进行调用时,其上下文是全局对象window; 2.  作为(对象)方法进行调用时,其上下文对象时拥有该方法的对象; 3.  作为构造器( ...

  6. Java EE 之 Hibernate异常总结【4】org.hibernate.exception.SQLGrammarException: could not execute statement

    本质原因:配置的Java Bean,由Hibernate自动产生的SQL语句中有语法错误 原因如下: 情况1.存在字段名/表名与数据库关键字冲突 情况2.MySQL5.0以后与MySQL5.0以前事务 ...

  7. [C++]指针与引用(定义辨析)

    1.定义:     1.1 &-----取地址运算符         功能:返变量的内存地址        Eg:int *p,m;  定义p为指向int类型变量的指针,同时定义变量m     ...

  8. [转]OpenBLAS项目与矩阵乘法优化

    课程内容 OpenBLAS项目介绍 矩阵乘法优化算法 一步步调优实现 以下为公开课完整视频,共64分钟: 以下为公开课内容的文字及 PPT 整理. 雷锋网的朋友们大家好,我是张先轶,今天主要介绍一下我 ...

  9. ActiveMQ集成Spring使用

    现在任何一个框架的使用都会结合spring框架,quartz.cxf与平时常见的Hibernate.mybatis.Struts等都可以与spring集成起来使用,在这里研究了activemq结合sp ...

  10. 如何用MoveIt快速搭建机器人运动规划平台?

    MoveIt = RobotGo,翻译成中文就是“机器人,走你!”所以,MoveIt的主要就是一款致力于让机器人能够自主运动及其相关技术的软件,它的所有模块都是围绕着运动规划的实现而设计的. 两个月前 ...