S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 9829    Accepted Submission(s): 4038

Problem Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Input

Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.

Output

For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.

Sample Input

2 2 5//两种取法,只能取2或5个

3//例数

2 5 12//例一:两堆石子个数分别为5和12

3 2 4 7

4 2 3 7 12

5 1 2 3 4 5//五种取法。。。。

3

2 5 12

3 2 4 7

4 2 3 7 12

0

Sample Output

LWW

WWL

#include<iostream>
#include<string.h>
using namespace std;
const int N=10001;
int k,sg[N],fa[111];
void getsg(int n)
{
bool mex[N];
for(int i=1;i<=n;i++)
{
memset(mex,0,sizeof(mex));
for(int j=0;j<k;j++)
if(i>=fa[j])
mex[sg[i-fa[j]]]=1;
for(int j=0;;j++)
if(!mex[j])
{
sg[i]=j;
break;
}
}
}
int main()
{
int m;
while(~scanf("%d",&k)&&k)
{
memset(fa,0,sizeof(fa));
for(int i=0;i<k;i++)
scanf("%d",&fa[i]);
getsg(N);
char s[111];
scanf("%d",&m);
for(int i=0;i<m;i++)
{
int h,l,sum=0;
scanf("%d",&l);
while(l--)
{
scanf("%d",&h);
sum^=sg[h];
}
if(sum)
s[i]='W';
else s[i]='L';
}
s[m]='\0';
printf("%s\n",s);
}
return 0;
}

HDU1536 S-Nim(sg函数变换规则)的更多相关文章

  1. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU1536&&POJ2960 S-Nim(SG函数博弈)

    S-Nim Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  3. 多校6 1003 HDU5795 A Simple Nim (sg函数)

    思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...

  4. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

  5. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  6. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

  7. HDU 3032 Nim or not Nim?(sg函数)

    题目链接 暴力出来,竟然眼花了以为sg(i) = i啊....看表要认真啊!!! #include <cstdio> #include <cstring> #include & ...

  8. S-Nim POJ - 2960 Nim + SG函数

    Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...

  9. [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数

    Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...

随机推荐

  1. Linux下网卡绑定模式

    Linux bonding驱动一共提供了7种模式,它们分别是:balance-rr .active-backup.balance-xor.broadcast.802.3ad.balance-tlb.b ...

  2. 使用Aspose.Cells生成Excel的线型图表

    目的: 1.根据模板里面的excel数据信息,动态创建line chart 2.linechart 的样式改为灰色 3.以流的形式写到客户端,不管客户端是否装excel,都可以导出到到客户端 4.使用 ...

  3. .NET Framework自带的文件内存映射类

    最近一直为文件内存映射发愁,整个两周一直折腾这个东西.在64位系统和32位系统还要针对内存的高低位进行计算.好麻烦..还是没搞定 偶然从MSDN上发现.NET 4.0把内存文件映射加到了.NET类库中 ...

  4. 《超哥带你学Linux》

    前言 “Linux?听说是一个操作系统,好用吗?” “我也不知道呀,和windows有什么区别?我能在Linux上玩LOL吗” “别提了,我用过Linux,就是黑乎乎一个屏幕,鼠标也不能用,不停地的敲 ...

  5. golang匿名结构体

    go语言定义结构体类型时可以仅指定字段类型而不指定字段名字.这种字段叫做匿名字段(anonymous field). Go语言有一个特性允许只声明一个成员对应的数据类型而不指名成员的名字:这类成员就 ...

  6. JavaWeb应用和Servlet

    JavaWeb应用的生命周期是由Servlet容器来控制的.包括三个阶段: 1.启动阶段:加载Web应用的有关数据,创建ServletContest对象,对Filter(过滤器)和一些Servlet进 ...

  7. 010、base镜像 (2018-12-27 周四)

    参考https://www.cnblogs.com/CloudMan6/p/6799197.html   什么是base镜像       不依赖其他镜像,从scratch构建.或者是其他可以作为基础镜 ...

  8. 通过COM组件方式实现java调用C#写的DLL文件 转

    最近一段时间单位在做一个Web项目,工程师用JAVA语言,需要公用人员信息,统一用户名和密码,原有的平台中是用C#语言开发的,在网上查找解决方法,通过JAVA调用C#的DLL文件实现.网上资料很多,自 ...

  9. JavaScript之12306自动刷新车票[待完善]

    function refresh(){ var search_btn = document.getElementById("query_ticket"); var result_t ...

  10. python 入门基础21 --面向对象_多态、内置方法、反射

    内容: 1.接口思想 2.抽象类思想 3.多态 4.内置方法 5.反射 1.接口思想 建立关联的桥梁,方便管理代码 接口类:用来定义功能的类,位继承它的子类提供功能 该类的功能方法一般不需要实现体,实 ...