L1&L2 Regularization的原理
L1&L2 Regularization
正则化方法:防止过拟合,提高泛化能力
在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work。

为了防止overfitting,可以用的方法有很多,下文就将以此展开。有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:training data、validation data,testing data。这个validation data是什么?它其实就是用来避免过拟合的,在训练过程中,我们通常用它来确定一些超参数(比如根据validation data上的accuracy来确定early stopping的epoch大小、根据validation data确定learning rate等等)。那为啥不直接在testing data上做这些呢?因为如果在testing data做这些,那么随着训练的进行,我们的网络实际上就是在一点一点地overfitting我们的testing data,导致最后得到的testing accuracy没有任何参考意义。因此,training data的作用是计算梯度更新权重,validation data如上所述,testing data则给出一个accuracy以判断网络的好坏。
避免过拟合的方法有很多:early stopping、数据集扩增(Data augmentation)、正则化(Regularization)包括L1、L2(L2 regularization也叫weight decay),dropout。
L2 regularization(权重衰减)
L2正则化就是在代价函数后面再加上一个正则化项:

C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0项的比重。另外还有一个系数1/2,1/2经常会看到,主要是为了后面求导的结果方便,后面那一项求导会产生一个2,与1/2相乘刚好凑整。
L2正则化项是怎么避免overfitting的呢?我们推导一下看看,先求导:

可以发现L2正则化项对b的更新没有影响,但是对于w的更新有影响:

在不使用L2正则化时,求导结果中w前系数为1,现在w前面系数为 1−ηλ/n ,因为η、λ、n都是正的,所以 1−ηλ/n小于1,它的效果是减小w,这也就是权重衰减(weight decay)的由来。当然考虑到后面的导数项,w最终的值可能增大也可能减小。
另外,需要提一下,对于基于mini-batch的随机梯度下降,w和b更新的公式跟上面给出的有点不同:


对比上面w的更新公式,可以发现后面那一项变了,变成所有导数加和,乘以η再除以m,m是一个mini-batch中样本的个数。
到目前为止,我们只是解释了L2正则化项有让w“变小”的效果,但是还没解释为什么w“变小”可以防止overfitting?一个所谓“显而易见”的解释就是:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合刚刚好(这个法则也叫做奥卡姆剃刀),而在实际应用中,也验证了这一点,L2正则化的效果往往好于未经正则化的效果。当然,对于很多人(包括我)来说,这个解释似乎不那么显而易见,所以这里添加一个稍微数学一点的解释(引自知乎):
过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。

而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。
L1 regularization
在原始的代价函数后面加上一个L1正则化项,即所有权重w的绝对值的和,乘以λ/n(这里不像L2正则化项那样,需要再乘以1/2,具体原因上面已经说过。)

同样先计算导数:

上式中sgn(w)表示w的符号。那么权重w的更新规则为:

比原始的更新规则多出了η * λ * sgn(w)/n这一项。当w为正时,更新后的w变小。当w为负时,更新后的w变大——因此它的效果就是让w往0靠,使网络中的权重尽可能为0,也就相当于减小了网络复杂度,防止过拟合。
另外,上面没有提到一个问题,当w为0时怎么办?当w等于0时,|W|是不可导的,所以我们只能按照原始的未经正则化的方法去更新w,这就相当于去掉η*λ*sgn(w)/n这一项,所以我们可以规定sgn(0)=0,这样就把w=0的情况也统一进来了。(在编程的时候,令sgn(0)=0,sgn(w>0)=1,sgn(w<0)=-1)
转载
L1&L2 Regularization的原理的更多相关文章
- L1&L2 Regularization
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- CPU缓存L1/L2/L3工作原理
点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 一.前言 在过去的几年中,计算机处理器取得了相当大的进步 ...
- 机器学习 - 正则化L1 L2
L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...
- 正则化方法:L1和L2 regularization、数据集扩增、dropout
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- 正则化方法:L1和L2 regularization、数据集扩增、dropout(转)
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666------ ...
- 如何理解机器学习/统计学中的各种范数norm | L1 | L2 | 使用哪种regularization方法?
参考: L1 Norm Regularization and Sparsity Explained for Dummies 专为小白解释的文章,文笔十分之幽默 why does a small L1 ...
- 防止过拟合:L1/L2正则化
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- TMS320C64x DSP L1 L2 Cache架构(1)——C64x Cache Architecture
[前沿]研究生阶段从事于DSP和FPGA技术的相关研究工作,学习并整理了大量的技术资料,包括TI公司的官方文档和网络上的详细笔记,花费了大量的时间和精力总结了前人的工作成果.无奈工作却从事于嵌入式技术 ...
- 正则化方法L1 L2
转载:http://blog.csdn.net/u012162613/article/details/44261657(请移步原文) 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者ov ...
随机推荐
- android studio 汉化 svn插件汉化。布局文件 属性 汉化 public.xml
android studio 汉化 SvnBundle.properties D:\Android Studio\plugins\svn4idea\lib resources_en.jar\org\j ...
- HDU.2829.Lawrence(DP 斜率优化)
题目链接 \(Description\) 给定一个\(n\)个数的序列,最多将序列分为\(m+1\)段,每段的价值是这段中所有数两两相乘的和.求最小总价值. \(Solution\) 写到这突然懒得写 ...
- React系列文章:Webpack模块组织关系
现代前端开发离不开打包工具,以Webpack为代表的打包工具已经成为日常开发必备之利器,拿React技术栈为例,我们ES6形式的源代码,需要经过Webpack和Babel处理,才能生成发布版文件,在浏 ...
- U3D面试题
直接上新.... 什么是协同程序?答:在主线程运行时同时开启另一段逻辑处理,来协助当前程序的执行.换句话说,开启协程就是开启一个可以与程序并行的逻辑.可以用来控制运动.序列以及对象的行为. Unity ...
- PHP 实现 word/excel/ppt 转换为 PDF
前段时间负责公司内部文件平台的设计,其中有一个需求是要能够在线浏览用户上传的 office 文件. 我的思路是先将 office 转换成 PDF,再通过 pdf.js 插件解析 PDF 文件,使其能在 ...
- IEEE 754二进制浮点数算术标准
可能很多人都遇到过浮点数精度丢失的问题,下面以JavaScript为例. 1 - 0.9 = 0.09999999999999998 纳尼,不应该是0.1么,怎么变成0.099999999999999 ...
- [leetcode]Maximal Rectangle @ Python
原题地址:https://oj.leetcode.com/problems/maximal-rectangle/ 题意:Given a 2D binary matrix filled with 0's ...
- CentOS7 下 keepalived 的安装和配置
安装前准备:yum -y install gcc gcc-c++ autoconf automake make yum -y install zlib zlib-devel openssl opens ...
- Juno Puppet Opertaors Meetup小结
今年五月刚结束的Juno OpenStack Summit是半年一度的Openstack盛会,抛去那些迷花渐欲乱人眼的商业活动,我们来看一看本届summit puppet-openstack社区有哪些 ...
- 如何成为一名Top DevOps Engineer
软件世界的战场 如果你对devops的概念不是很了解的话,没有关系,可以先跳到维基百科阅读一下DevOps条目.有了模模糊糊的概念之后, 我们先抛开所有市面上对于devops的各种夸大和炒作,首先来思 ...