Basis(基础):

MSE(Mean Square Error 均方误差),
LMS(LeastMean Square 最小均方),
LSM(Least Square Methods 最小二乘法),
MLE(MaximumLikelihood Estimation最大似然估计),
QP(Quadratic Programming 二次规划),
CP(Conditional Probability条件概率),
JP(Joint Probability 联合概率),
MP(Marginal Probability边缘概率),
Bayesian Formula(贝叶斯公式),
L1 /L2Regularization(L1/L2正则,
以及更多的,现在比较火的L2.5正则等),
GD(GradientDescent 梯度下降),
SGD(Stochastic Gradient Descent 随机梯度下降),
Eigenvalue(特征值),
Eigenvector(特征向量),
QR-decomposition(QR分解),
Quantile (分位数),
Covariance(协方差矩阵)。

Common Distribution(常见分布):

Discrete Distribution(离散型分布):

BernoulliDistribution/Binomial(贝努利分布/二项分布),
Negative BinomialDistribution(负二项分布),
MultinomialDistribution(多项式分布),
Geometric Distribution(几何分布),
HypergeometricDistribution(超几何分布),
Poisson Distribution (泊松分布)。

Continuous Distribution (连续型分布):

UniformDistribution(均匀分布),
Normal Distribution /Guassian Distribution(正态分布/高斯分布),
ExponentialDistribution(指数分布),
Lognormal Distribution(对数正态分布),
GammaDistribution(Gamma分布),
Beta Distribution(Beta分布),
Dirichlet Distribution(狄利克雷分布),
Rayleigh Distribution(瑞利分布),
Cauchy Distribution(柯西分布),
Weibull Distribution (韦伯分布)。

Three Sampling Distribution(三大抽样分布):

Chi-squareDistribution(卡方分布),
t-distribution(t-distribution),
F-distribution(F-分布)。

Data Pre-processing(数据预处理):

Missing Value Imputation(缺失值填充),
Discretization(离散化),Mapping(映射),
Normalization(归一化/标准化)。

Sampling(采样):

Simple Random Sampling(简单随机采样),
OfflineSampling(离线等可能K采样),
Online Sampling(在线等可能K采样),
Ratio-based Sampling(等比例随机采样),
Acceptance-RejectionSampling(接受-拒绝采样),
Importance Sampling(重要性采样),
MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。

Clustering(聚类):

K-Means,
K-Mediods,
二分K-Means,
FK-Means,
Canopy,
Spectral-KMeans(谱聚类),
GMM-EM(混合高斯模型-期望最大化算法解决),
K-Pototypes,CLARANS(基于划分),
BIRCH(基于层次),
CURE(基于层次),
DBSCAN(基于密度),
CLIQUE(基于密度和基于网格)。

Classification&Regression(分类&回归):

LR(Linear Regression 线性回归),
LR(LogisticRegression逻辑回归),
SR(Softmax Regression 多分类逻辑回归),
GLM(GeneralizedLinear Model 广义线性模型),
RR(Ridge Regression 岭回归/L2正则最小二乘回归),
LASSO(Least Absolute Shrinkage andSelectionator Operator L1正则最小二乘回归),
RF(随机森林),
DT(DecisionTree决策树),
GBDT(Gradient BoostingDecision Tree 梯度下降决策树),
CART(ClassificationAnd Regression Tree 分类回归树),
KNN(K-Nearest Neighbor K近邻),
SVM(Support VectorMachine),
KF(KernelFunction 核函数PolynomialKernel Function 多项式核函、
Guassian KernelFunction 高斯核函数/Radial BasisFunction RBF径向基函数、
String KernelFunction 字符串核函数)、
NB(Naive Bayes 朴素贝叶斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络),
LDA(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别),
EL(Ensemble Learning集成学习Boosting,Bagging,Stacking),
AdaBoost(Adaptive Boosting 自适应增强),
MEM(MaximumEntropy Model最大熵模型)。

Effectiveness Evaluation(分类效果评估):

Confusion Matrix(混淆矩阵),
Precision(精确度),Recall(召回率),
Accuracy(准确率),F-score(F得分),
ROC Curve(ROC曲线),AUC(AUC面积),
LiftCurve(Lift曲线) ,KS Curve(KS曲线)。

PGM(Probabilistic Graphical Models概率图模型):

BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 贝叶斯网络/贝叶斯信度网络/信念网络),
MC(Markov Chain 马尔科夫链),
HMM(HiddenMarkov Model 马尔科夫模型),
MEMM(Maximum Entropy Markov Model 最大熵马尔科夫模型),
CRF(ConditionalRandom Field 条件随机场),
MRF(MarkovRandom Field 马尔科夫随机场)。

NN(Neural Network神经网络):

ANN(Artificial Neural Network 人工神经网络),
BP(Error BackPropagation 误差反向传播)。

Deep Learning(深度学习):

Auto-encoder(自动编码器),
SAE(Stacked Auto-encoders堆叠自动编码器,
Sparse Auto-encoders稀疏自动编码器、
Denoising Auto-encoders去噪自动编码器、
Contractive Auto-encoders 收缩自动编码器),
RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机),
DBN(Deep Belief Network 深度信念网络),
CNN(ConvolutionalNeural Network 卷积神经网络),
Word2Vec(词向量学习模型)。

DimensionalityReduction(降维):

LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别,
PCA(Principal Component Analysis 主成分分析),
ICA(IndependentComponent Analysis 独立成分分析),
SVD(Singular Value Decomposition 奇异值分解),
FA(FactorAnalysis 因子分析法)。

Text Mining(文本挖掘):

VSM(Vector Space Model向量空间模型),
Word2Vec(词向量学习模型),
TF(Term Frequency词频),
TF-IDF(Term Frequency-Inverse DocumentFrequency 词频-逆向文档频率),
MI(MutualInformation 互信息),
ECE(Expected Cross Entropy 期望交叉熵),
QEMI(二次信息熵),
IG(InformationGain 信息增益),
IGR(Information Gain Ratio 信息增益率),
Gini(基尼系数),
x2 Statistic(x2统计量),
TEW(TextEvidence Weight文本证据权),
OR(Odds Ratio 优势率),
N-Gram Model,
LSA(Latent Semantic Analysis 潜在语义分析),
PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潜在语义分析),
LDA(Latent DirichletAllocation 潜在狄利克雷模型)。

Association Mining(关联挖掘):

Apriori,
FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法),
AprioriAll,
Spade。

Recommendation Engine(推荐引擎):

DBR(Demographic-based Recommendation 基于人口统计学的推荐),
CBR(Context-basedRecommendation 基于内容的推荐),
CF(Collaborative Filtering协同过滤),
UCF(User-basedCollaborative Filtering Recommendation 基于用户的协同过滤推荐),
ICF(Item-basedCollaborative Filtering Recommendation 基于项目的协同过滤推荐)。

Similarity Measure&Distance Measure(相似性与距离度量):

Euclidean Distance(欧式距离),
ManhattanDistance(曼哈顿距离),
Chebyshev Distance(切比雪夫距离),
MinkowskiDistance(闵可夫斯基距离),
Standardized Euclidean Distance(标准化欧氏距离),
MahalanobisDistance(马氏距离),
Cos(Cosine 余弦),
HammingDistance/Edit Distance(汉明距离/编辑距离),
JaccardDistance(杰卡德距离),
Correlation Coefficient Distance(相关系数距离),
InformationEntropy(信息熵),
KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相对熵)。

Optimization(最优化):

Non-constrainedOptimization(无约束优化):

Cyclic VariableMethods(变量轮换法),
Pattern Search Methods(模式搜索法),
VariableSimplex Methods(可变单纯形法),
Gradient Descent Methods(梯度下降法),
Newton Methods(牛顿法),
Quasi-NewtonMethods(拟牛顿法),
Conjugate Gradient Methods(共轭梯度法)。

ConstrainedOptimization(有约束优化):

Approximation Programming Methods(近似规划法),
FeasibleDirection Methods(可行方向法),
Penalty Function Methods(罚函数法),
Multiplier Methods(乘子法)。
Heuristic Algorithm(启发式算法),
SA(SimulatedAnnealing,
模拟退火算法),
GA(genetic algorithm遗传算法)。

Feature Selection(特征选择算法):

Mutual Information(互信息),
DocumentFrequence(文档频率),
Information Gain(信息增益),
Chi-squared Test(卡方检验),
Gini(基尼系数)。

Outlier Detection(异常点检测算法):

Statistic-based(基于统计),
Distance-based(基于距离),
Density-based(基于密度),
Clustering-based(基于聚类)。

Learning to Rank(基于学习的排序):

Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART。

Tool(工具):

MPI,Hadoop生态圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
以及一些具体的业务场景与case等。

常用的机器学习&数据挖掘知识(点)总结的更多相关文章

  1. 常用的机器学习&数据挖掘知识点【转】

    转自: [基础]常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Le ...

  2. 【基础】常用的机器学习&数据挖掘知识点

    Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),ML ...

  3. 常用的机器学习&数据挖掘知识点

    Basis(基础):MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE ...

  4. 常用的机器学习&数据挖掘知识点总结

    Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),ML ...

  5. 常用python机器学习库总结

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

  6. Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)

    原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...

  7. [resource-]Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱

    reference: http://www.52nlp.cn/python-%e7%bd%91%e9%a1%b5%e7%88%ac%e8%99%ab-%e6%96%87%e6%9c%ac%e5%a4% ...

  8. 【Python】Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱

    本文转载自:https://www.cnblogs.com/colipso/p/4284510.html 好文 mark http://www.52nlp.cn/python-%E7%BD%91%E9 ...

  9. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

随机推荐

  1. git安装及基础用法

    1.安装GitGit-2.9.3-64-bit.exe 2.打开Git Bash,设置用户名,Email $ git config --global user.name "Your Name ...

  2. QML C++插件dll引用

    插件的创建非常简单,但是它可以复用,并且为不同的应用程序扩展类型.使用创建的插件是非常灵活的解决方案.关于插件一个很好的例子见QmlBook-In-Chinese 中最后一章介绍的例子. 本文主要备忘 ...

  3. 关于Java Web应用中的配置部署描述符web.xml

    一.web.xml概述 位于每个Web应用的WEB-INF路径下的web.xml文件被称为配置描述符,这个 web.xml文件对于Java Web应用十分重要,每个Java Web应用都必须包含一个w ...

  4. python装饰器@用法

    这个是我见过比较好的讲解链接: [廖雪峰的官方网站 - 装饰器]

  5. Future、 CompletableFuture、ThreadPoolTaskExecutor简单实践

    一 Future(jdk5引入) 简介: Future接口是Java多线程Future模式的实现,可以来进行异步计算. 可以使用isDone方法检查计算是否完成,或者使用get阻塞住调用线程,直到计算 ...

  6. 使用swiper.js实现移动端tab切换

    在项目中遇到的,要实现tab切换,我用的是swiper.js 官网:http://www.swiper.com.cn/api/start/new.html <!DOCTYPE html> ...

  7. 从html页面中抽取table表格数据

    /** * [getDataFromTrElems 获取表格行元素数据] * @param {[Object]} trElems [trs dom] * @param {[String]} type ...

  8. 【ES】学习3-请求体查询

    1.空查询 GET /index_2014*/type1,type2/_search {} GET /_search { , } 2.查询表达式 DSL只需将查询语句传递给 query 参数 GET ...

  9. linux 终端上网设置

    原网址: https://www.aliyun.com/jiaocheng/215068.html 摘要:第一步,需要安装一个名为w3m的软件工具,打开终端,输入如下命令sudoapt-getinst ...

  10. 获取修改value

    val() 方法,获取和修改有value属性的元素,有value属性的元素有input.botton.select等.相当于JavaScript中的value. <!DOCTYPE html&g ...