思路:

并查集维护每个开关的状态on[i]和off[i] 。
假设灯L由开关S1和S2控制。
如果开关是亮的,则S1和S2的状态相反;
如果开关是灭的,则S1和S2的状态相同。
当一个开关状态已知时,可以得知另一个开关的状态,合并。
如果on[i]和off[i]在同一个集合就无解。
时间复杂度:O((n+m)α(n))。
当然也可以二分图判定。

 #include<cstdio>
#define on(i) i
#define off(i) i+m
const int M=,N=;
class DisjointSet {
private:
int anc[M<<];
int Find(const int x) {
return (x==anc[x])?x:(anc[x]=Find(anc[x]));
}
public:
DisjointSet(const int m) {
for(int i=;i<=(m<<);i++) {
anc[i]=i;
}
}
void Union(const int x,const int y) {
anc[Find(x)]=Find(y);
}
bool isConnected(const int x,const int y) {
return Find(x)==Find(y);
}
};
int r[N];
int l[N][]={};
int main() {
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) {
scanf("%d",&r[i]);
}
for(int i=;i<=m;i++) {
int x;
scanf("%d",&x);
while(x--) {
int d;
scanf("%d",&d);
l[d][l[d][]?:]=i;
}
}
DisjointSet s(m);
for(int i=;i<=n;i++) {
if(!r[i]) {
s.Union(on(l[i][]),off(l[i][]));
s.Union(on(l[i][]),off(l[i][]));
}
else {
s.Union(on(l[i][]),on(l[i][]));
s.Union(off(l[i][]),off(l[i][]));
}
}
for(int i=;i<=m;i++) {
if(s.isConnected(on(i),off(i))) {
puts("NO");
return ;
}
}
puts("YES");
return ;
}

[CF776D]The Door Problem的更多相关文章

  1. CF776D The Door Problem[2-SAT]

    翻译 对于一扇门,如果是关的,那么他必须使用其中一个开关开开来,如果是开的,要么使用两个开关,要么啥都不做.这样,每扇门恰好对应两种状态,要选一个. 考虑用2-SAT模型解决.连边的话是对于一个机关, ...

  2. CF776D The Door Problem [2sat]

    考虑 \(\texttt{2-SAT}\) 首先每个门 \(i\) 都有一个初始状态 \(a_i\) 题目条件每个门只被两个开关控制,那么很显然的 \(\texttt{2-SAT}\) 用 \(b_{ ...

  3. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  4. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  5. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  6. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  7. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  8. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

随机推荐

  1. Nodejs+定时截图+发送邮件

    功能 每天定时截图,并把截到的图片自动通过邮件发送. 说明 代码注释已经非常详细,就不多做说明,需要的朋友自己查看代码即可,主文件Mail.js,截图文件capturePart1.js,capture ...

  2. sqlserver 无法获得数据库独占权

    ALTER DATABASE trqxs_cs SET OFFLINE WITH ROLLBACK IMMEDIATE

  3. 通达OA系统优化-对mysql数据库减肥

    OA系统冗余数据过多,访问效率受到影响,现需要对历史数据进行一次清理,以提高OA访问速度 大的数据主要体现在流程上,流程数据主要放在flow_run,flow_run_data,flow_run_pr ...

  4. 手机端的1px边框如何实现

    (1).把边框设置为absolute,使用after,定义宽度为1px(mixin.styl) (2).通过@media,判断不同的dpi,来改变相应的Y轴宽度(base.styl),定义公共clas ...

  5. CF126B

    CF126B Password 题意: 给出一个字符串 H,找一个最长的字符串 h,使得它既作为前缀出现过.又作为后缀出现过.还作为中间的子串出现过. 解法: 沿着 $ next_n $ 枚举字符串, ...

  6. Arrange an Array to Form a Smallest Digit

    /** * Input an array of positive integers, arrange the integers to form new digits, * and output the ...

  7. python 全栈开发,Day142(flask标准目录结构, flask使用SQLAlchemy,flask离线脚本,flask多app应用,flask-script,flask-migrate,pipreqs)

    昨日内容回顾 1. 简述flask上下文管理 - threading.local - 偏函数 - 栈 2. 原生SQL和ORM有什么优缺点? 开发效率: ORM > 原生SQL 执行效率: 原生 ...

  8. For each loop in Native C++

    今天发现 for each 语法居然可以直接编译通过,之前还以为只有开了/clr才可以支持.查了一下资料发现ms从vs2005就已经支持了.虽然不符合标准不过用着确实方便啊,必须记录一下. 具体看这里 ...

  9. Zookeeper笔记(一)初识Zookeeper

    为什么需要Zookeeper Zookeeper是一个典型的分布式数据一致性的解决方案,分布式应用程序可以基于它实现诸如数据发布/订阅.负载均衡.命名服务.分布式协调/通知.集群管理.Master选举 ...

  10. springmvc文件上传下载简单实现案例(ssm框架使用)

    springmvc文件上传下载实现起来非常简单,此springmvc上传下载案例适合已经搭建好的ssm框架(spring+springmvc+mybatis)使用,ssm框架项目的搭建我相信你们已经搭 ...