Flink - ShipStrategyType
对于DataStream,可以选择如下的Strategy,
/**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are broadcasted to every parallel instance of the next operation.
*
* @return The DataStream with broadcast partitioning set.
*/
public DataStream<T> broadcast() {
return setConnectionType(new BroadcastPartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are shuffled uniformly randomly to the next operation.
*
* @return The DataStream with shuffle partitioning set.
*/
@PublicEvolving
public DataStream<T> shuffle() {
return setConnectionType(new ShufflePartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are forwarded to the local subtask of the next operation.
*
* @return The DataStream with forward partitioning set.
*/
public DataStream<T> forward() {
return setConnectionType(new ForwardPartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are distributed evenly to instances of the next operation in a round-robin
* fashion.
*
* @return The DataStream with rebalance partitioning set.
*/
public DataStream<T> rebalance() {
return setConnectionType(new RebalancePartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are distributed evenly to a subset of instances of the next operation in a round-robin
* fashion.
*
* <p>The subset of downstream operations to which the upstream operation sends
* elements depends on the degree of parallelism of both the upstream and downstream operation.
* For example, if the upstream operation has parallelism 2 and the downstream operation
* has parallelism 4, then one upstream operation would distribute elements to two
* downstream operations while the other upstream operation would distribute to the other
* two downstream operations. If, on the other hand, the downstream operation has parallelism
* 2 while the upstream operation has parallelism 4 then two upstream operations will
* distribute to one downstream operation while the other two upstream operations will
* distribute to the other downstream operations.
*
* <p>In cases where the different parallelisms are not multiples of each other one or several
* downstream operations will have a differing number of inputs from upstream operations.
*
* @return The DataStream with rescale partitioning set.
*/
@PublicEvolving
public DataStream<T> rescale() {
return setConnectionType(new RescalePartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output values
* all go to the first instance of the next processing operator. Use this
* setting with care since it might cause a serious performance bottleneck
* in the application.
*
* @return The DataStream with shuffle partitioning set.
*/
@PublicEvolving
public DataStream<T> global() {
return setConnectionType(new GlobalPartitioner<T>());
}
逻辑都是由Partitoner来实现的,
BroadcastPartitioner
public class BroadcastPartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L;
int[] returnArray;
boolean set;
int setNumber;
@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
if (set && setNumber == numberOfOutputChannels) {
return returnArray;
} else {
this.returnArray = new int[numberOfOutputChannels];
for (int i = 0; i < numberOfOutputChannels; i++) {
returnArray[i] = i;
}
set = true;
setNumber = numberOfOutputChannels;
return returnArray;
}
}
int[] returnArray, 数组,select的channel id
broadcast,要发到所有channel,所以returnArray要包含所有的channel id
ShufflePartitioner,随机选一个channel
public class ShufflePartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L;
private Random random = new Random();
private int[] returnArray = new int[1];
@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
returnArray[0] = random.nextInt(numberOfOutputChannels);
return returnArray;
}
ForwardPartitioner,对于forward,应该只有一个输出channel,所以就选第一个channel就可以
public class ForwardPartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L;
private int[] returnArray = new int[] {0};
@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record, int numberOfOutputChannels) {
return returnArray;
}
RebalancePartitioner,就是roundrobin,循环选择
public class RebalancePartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L;
private int[] returnArray = new int[] {-1};
@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
this.returnArray[0] = (this.returnArray[0] + 1) % numberOfOutputChannels;
return this.returnArray;
}
GlobalPartitioner,默认选第一个
public class GlobalPartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L;
private int[] returnArray = new int[] { 0 };
@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
return returnArray;
}
在RecordWriter中,emit会调用selectChannels来选取channel
public void emit(T record) throws IOException, InterruptedException {
for (int targetChannel : channelSelector.selectChannels(record, numChannels)) {
sendToTarget(record, targetChannel);
}
}
Flink - ShipStrategyType的更多相关文章
- Flink架构,源码及debug
序 工作中用Flink做批量和流式处理有段时间了,感觉只看Flink文档是对Flink ProgramRuntime的细节描述不是很多, 程序员还是看代码最简单和有效.所以想写点东西,记录一下,如果能 ...
- apache flink 入门
配置环境 包括 JAVA_HOME jobmanager.rpc.address jobmanager.heap.mb 和 taskmanager.heap.mb taskmanager.number ...
- Flink 1.1 – ResourceManager
Flink resource manager的作用如图, FlinkResourceManager /** * * <h1>Worker allocation steps</h1 ...
- Apache Flink初接触
Apache Flink闻名已久,一直没有亲自尝试一把,这两天看了文档,发现在real-time streaming方面,Flink提供了更多高阶的实用函数. 用Apache Flink实现WordC ...
- Flink - InstanceManager
InstanceManager用于管理JobManager申请到的taskManager和slots资源 /** * Simple manager that keeps track of which ...
- Flink – window operator
参考, http://wuchong.me/blog/2016/05/25/flink-internals-window-mechanism/ http://wuchong.me/blog/201 ...
- Flink – Trigger,Evictor
org.apache.flink.streaming.api.windowing.triggers; Trigger public abstract class Trigger<T, W e ...
- Flink - RocksDBStateBackend
如果要考虑易用性和效率,使用rocksDB来替代普通内存的kv是有必要的 有了rocksdb,可以range查询,可以支持columnfamily,可以各种压缩 但是rocksdb本身是一个库,是跑在 ...
- Flink - state管理
在Flink – Checkpoint 没有描述了整个checkpoint的流程,但是对于如何生成snapshot和恢复snapshot的过程,并没有详细描述,这里补充 StreamOperato ...
随机推荐
- vue设置默认地址和配送方式
1.截图 2.address.html <!DOCTYPE html> <html lang="en"> <head> <meta cha ...
- 修改ip导致服务不可用
修改ip导致服务不可用 1.修改hostsvi /etc/hosts 修改ip地址 2.lsnrctl start 后会发现The listener supports no services,解决方案 ...
- Android 录音和播放
今天工作上需要做一个一边录音一边播放的功能,大致原因是有一个外部设备输入音频到我们机器,然后我们机器需要马上把音频播放出来.所以了解了一些有关录音和播放的知识.接到这个任务的第一反应就是看看Andro ...
- tomcat启动时非常慢,启动时 一直卡在Root WebApplicationContext: initialization completed
每次重启自己的服务tomcat都需要卡住很长时间,每次都是日志停在 Root WebApplicationContext: initialization completed in 744 ms这个地方 ...
- opencv之内存存储器——CvMemStorage与CvSeq
1.CvMemStorage *storage=cvCreateMemStorage(block_size); 用来创建一个内存存储器,来统一管理各种动态对象的内存. 函数返回一个新创建的内存存储器指 ...
- headfirst python 01~02
列表 列表就像是数组 在python 创建一个列表时, 解释器会在内存中创建一个类似数组的数据结构来存储数据, 数据项自下而上(形成一个堆栈), 类似于其他编程语言中的数组. 列表中常用方法: cas ...
- Mysql系列二:Mysql 开发标准规范
原文链接:http://www.cnblogs.com/liulei-LL/p/7729983.html 一.表设计 1. 库名.表名.字段名使用小写字母,“_”分割. 2. 库名.表名.字段名不超过 ...
- [Laravel] 07 - Project: functions in Controller
故事背景 一.项目预览 From: https://www.imooc.com/video/12521 表单操作 一.新增信息 既然是操作,自然会想到:控制器. 控制器 [1] 路由 ----> ...
- 如何处理MySQL每月5亿的数据
第一阶段:1,一定要正确设计索引2,一定要避免SQL语句全表扫描,所以SQL一定要走索引(如:一切的 > < != 等等之类的写法都会导致全表扫描)3,一定要避免 limit 100000 ...
- mysql无法生成log文件
做服务器主从配置时,发现/var/log/mysql下面一直没有log文件,明明配置文件/etc/mysql/mysql.conf.d/mysqld.cnf也开启log了. general_log_f ...