对于DataStream,可以选择如下的Strategy,

/**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are broadcasted to every parallel instance of the next operation.
*
* @return The DataStream with broadcast partitioning set.
*/
public DataStream<T> broadcast() {
return setConnectionType(new BroadcastPartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are shuffled uniformly randomly to the next operation.
*
* @return The DataStream with shuffle partitioning set.
*/
@PublicEvolving
public DataStream<T> shuffle() {
return setConnectionType(new ShufflePartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are forwarded to the local subtask of the next operation.
*
* @return The DataStream with forward partitioning set.
*/
public DataStream<T> forward() {
return setConnectionType(new ForwardPartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are distributed evenly to instances of the next operation in a round-robin
* fashion.
*
* @return The DataStream with rebalance partitioning set.
*/
public DataStream<T> rebalance() {
return setConnectionType(new RebalancePartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output elements
* are distributed evenly to a subset of instances of the next operation in a round-robin
* fashion.
*
* <p>The subset of downstream operations to which the upstream operation sends
* elements depends on the degree of parallelism of both the upstream and downstream operation.
* For example, if the upstream operation has parallelism 2 and the downstream operation
* has parallelism 4, then one upstream operation would distribute elements to two
* downstream operations while the other upstream operation would distribute to the other
* two downstream operations. If, on the other hand, the downstream operation has parallelism
* 2 while the upstream operation has parallelism 4 then two upstream operations will
* distribute to one downstream operation while the other two upstream operations will
* distribute to the other downstream operations.
*
* <p>In cases where the different parallelisms are not multiples of each other one or several
* downstream operations will have a differing number of inputs from upstream operations.
*
* @return The DataStream with rescale partitioning set.
*/
@PublicEvolving
public DataStream<T> rescale() {
return setConnectionType(new RescalePartitioner<T>());
} /**
* Sets the partitioning of the {@link DataStream} so that the output values
* all go to the first instance of the next processing operator. Use this
* setting with care since it might cause a serious performance bottleneck
* in the application.
*
* @return The DataStream with shuffle partitioning set.
*/
@PublicEvolving
public DataStream<T> global() {
return setConnectionType(new GlobalPartitioner<T>());
}

 

逻辑都是由Partitoner来实现的,

BroadcastPartitioner

public class BroadcastPartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; int[] returnArray;
boolean set;
int setNumber; @Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
if (set && setNumber == numberOfOutputChannels) {
return returnArray;
} else {
this.returnArray = new int[numberOfOutputChannels];
for (int i = 0; i < numberOfOutputChannels; i++) {
returnArray[i] = i;
}
set = true;
setNumber = numberOfOutputChannels;
return returnArray;
}
}

int[] returnArray, 数组,select的channel id

broadcast,要发到所有channel,所以returnArray要包含所有的channel id

 

ShufflePartitioner,随机选一个channel

public class ShufflePartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; private Random random = new Random(); private int[] returnArray = new int[1]; @Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
returnArray[0] = random.nextInt(numberOfOutputChannels);
return returnArray;
}

 

ForwardPartitioner,对于forward,应该只有一个输出channel,所以就选第一个channel就可以

public class ForwardPartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; private int[] returnArray = new int[] {0}; @Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record, int numberOfOutputChannels) {
return returnArray;
}

 

RebalancePartitioner,就是roundrobin,循环选择

public class RebalancePartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; private int[] returnArray = new int[] {-1}; @Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
this.returnArray[0] = (this.returnArray[0] + 1) % numberOfOutputChannels;
return this.returnArray;
}

 

GlobalPartitioner,默认选第一个

public class GlobalPartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; private int[] returnArray = new int[] { 0 }; @Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
int numberOfOutputChannels) {
return returnArray;
}

 

在RecordWriter中,emit会调用selectChannels来选取channel

    public void emit(T record) throws IOException, InterruptedException {
for (int targetChannel : channelSelector.selectChannels(record, numChannels)) {
sendToTarget(record, targetChannel);
}
}

Flink - ShipStrategyType的更多相关文章

  1. Flink架构,源码及debug

    序 工作中用Flink做批量和流式处理有段时间了,感觉只看Flink文档是对Flink ProgramRuntime的细节描述不是很多, 程序员还是看代码最简单和有效.所以想写点东西,记录一下,如果能 ...

  2. apache flink 入门

    配置环境 包括 JAVA_HOME jobmanager.rpc.address jobmanager.heap.mb 和 taskmanager.heap.mb taskmanager.number ...

  3. Flink 1.1 – ResourceManager

    Flink resource manager的作用如图,   FlinkResourceManager /** * * <h1>Worker allocation steps</h1 ...

  4. Apache Flink初接触

    Apache Flink闻名已久,一直没有亲自尝试一把,这两天看了文档,发现在real-time streaming方面,Flink提供了更多高阶的实用函数. 用Apache Flink实现WordC ...

  5. Flink - InstanceManager

    InstanceManager用于管理JobManager申请到的taskManager和slots资源 /** * Simple manager that keeps track of which ...

  6. Flink – window operator

      参考, http://wuchong.me/blog/2016/05/25/flink-internals-window-mechanism/ http://wuchong.me/blog/201 ...

  7. Flink – Trigger,Evictor

    org.apache.flink.streaming.api.windowing.triggers;   Trigger public abstract class Trigger<T, W e ...

  8. Flink - RocksDBStateBackend

    如果要考虑易用性和效率,使用rocksDB来替代普通内存的kv是有必要的 有了rocksdb,可以range查询,可以支持columnfamily,可以各种压缩 但是rocksdb本身是一个库,是跑在 ...

  9. Flink - state管理

    在Flink – Checkpoint 没有描述了整个checkpoint的流程,但是对于如何生成snapshot和恢复snapshot的过程,并没有详细描述,这里补充   StreamOperato ...

随机推荐

  1. 6-11-N皇后问题-树和二叉树-第6章-《数据结构》课本源码-严蔚敏吴伟民版

    课本源码部分 第6章  树和二叉树 - N皇后问题 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版>(严蔚敏,吴伟民版)课本 ...

  2. Linux好用的工具命令 - nl/du

    nl 添加行号后打印输出文本内容,以下例子演示了cat 和nl 输出nlDemo文档的区别. [root@ptarmiganantelope:~]# cat nlDemo root:x:0:0:roo ...

  3. GitHub网站操作

    1.建立新的仓库 2.添加文件 3.新建一个分支 4.删除仓库

  4. tensorflow 笔记10:tf.nn.sparse_softmax_cross_entropy_with_logits 函数

    函数:tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None) ...

  5. 【iCore1S 双核心板_FPGA】例程一:GPIO输出实验——点亮LED

    实验现象: 三色LED循环点亮. 核心源代码: //--------------------Module_LED-----------------------------// module LED( ...

  6. WebService学习总结——调用第三方提供的webService服务

    互联网上面有很多的免费webService服务,我们可以调用这些免费的WebService服务,将一些其他网站的内容信息集成到我们的Web应用中显示,下面就以获取天气预报数据. 气象中心的管理系统将收 ...

  7. Pwnium CTF2014 – MatterOfCombination writeup

    这道题是虽然只有75分,但是做出来的队伍却很少,我们队伍也没有做出来,这次是看到了0xAWES0ME 的解题思路后才有了这篇文章.原文地址可以点击看这里,英文的. 题目就是一张图片: 在网上可以找到这 ...

  8. 仿照支付宝账单界面--listview分组显示 用来做!发!财树充值交易明细

    QQ图片20150430155638.png (151.65 KB, 下载次数: 32)     下载链接: http://pan.baidu.com/s/1kVMY1SV 密码: i8ta

  9. 记一次 Spring 事务配置踩坑记

    记一次 Spring 事务配置踩坑记 问题描述:(SpringBoot + MyBatisPlus) 业务逻辑伪代码如下.理论上,插入数据 t1 后,xxService.getXxx() 方法的查询条 ...

  10. 【代码审计】大米CMS_V5.5.3 任意文件读取漏洞分析

      0x00 环境准备 大米CMS官网:http://www.damicms.com 网站源码版本:大米CMS_V5.5.3试用版(更新时间:2017-04-15) 程序源码下载:http://www ...