Lucene - CustomScoreQuery 自定义排序
在某些场景需要做自定义排序(非单值字段排序、非文本相关度排序),除了自己重写collect、weight,可以借助CustomScoreQuery。
场景:根据tag字段中标签的数量进行排序(tag字段中,标签的数量越多得分越高)
public class CustomScoreTest {
public static void main(String[] args) throws IOException {
Directory dir = new RAMDirectory();
Analyzer analyzer = new WhitespaceAnalyzer(Version.LUCENE_4_9);
IndexWriterConfig conf = new IndexWriterConfig(Version.LUCENE_4_9, analyzer);
IndexWriter writer = new IndexWriter(dir, conf);
Document doc1 = new Document();
FieldType type1 = new FieldType();
type1.setIndexed(true);
type1.setStored(true);
type1.setStoreTermVectors(true);
Field field1 = new Field("f1", "fox", type1);
doc1.add(field1);
Field field2 = new Field("tag", "fox1 fox2 fox3 ", type1);
doc1.add(field2);
writer.addDocument(doc1);
//
field1.setStringValue("fox");
field2.setStringValue("fox1");
doc1 = new Document();
doc1.add(field1);
doc1.add(field2);
writer.addDocument(doc1);
//
field1.setStringValue("fox");
field2.setStringValue("fox1 fox2 fox3 fox4");
doc1 = new Document();
doc1.add(field1);
doc1.add(field2);
writer.addDocument(doc1);
//
writer.commit();
//
IndexSearcher searcher = new IndexSearcher(DirectoryReader.open(dir));
Query query = new MatchAllDocsQuery();
CountingQuery customQuery = new CountingQuery(query);
int n = 10;
TopDocs tds = searcher.search(query, n);
ScoreDoc[] sds = tds.scoreDocs;
for (ScoreDoc sd : sds) {
System.out.println(searcher.doc(sd.doc));
}
}
}
测试结果:
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 >>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1>>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 fox4>>
自定义打分:
public class CountingQuery extends CustomScoreQuery { public CountingQuery(Query subQuery) {
super(subQuery);
} protected CustomScoreProvider getCustomScoreProvider(AtomicReaderContext context) throws IOException {
return new CountingQueryScoreProvider(context, "tag");
}
}
public class CountingQueryScoreProvider extends CustomScoreProvider { String field; public CountingQueryScoreProvider(AtomicReaderContext context) {
super(context);
} public CountingQueryScoreProvider(AtomicReaderContext context, String field) {
super(context);
this.field = field;
} public float customScore(int doc, float subQueryScore, float valSrcScores[]) throws IOException {
IndexReader r = context.reader();
Terms tv = r.getTermVector(doc, field);
TermsEnum termsEnum = null;
int numTerms = 0;
if (tv != null) {
termsEnum = tv.iterator(termsEnum);
while ((termsEnum.next()) != null) {
numTerms++;
}
}
return (float) (numTerms);
} }
使用:
CountingQuery customQuery = new CountingQuery(query);
测试结果如下:
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 fox4>>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 >>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1>>
//-----------------------
weight/score/similarity
collector
主要参考
http://opensourceconnections.com/blog/2014/03/12/using-customscorequery-for-custom-solrlucene-scoring/
快照:
One item stands out on that list as a little low-level but not quite as bad as building a custom Lucene query: CustomScoreQuery. When you implement your own Lucene query, you’re taking control of two things:
Matching – what documents should be included in the search results
Scoring – what score should be assigned to a document (and therefore what order should they appear in)
Frequently you’ll find that existing Lucene queries will do fine with matching but you’d like to take control of just the scoring/ordering. That’s what CustomScoreQuery gives you – the ability to wrap another Lucene Query and rescore it.
For example, let’s say you’re searching our favorite dataset – SciFi Stackexchange, A Q&A site dedicated to nerdy SciFi and Fantasy questions. The posts on the site are tagged by topic: “star-trek”, “star-wars”, etc. Lets say for whatever reason we want to search for a tag and order it by the number of tags such that questions with the most tags are sorted to the top.
In this example, a simple TermQuery could be sufficient for matching. To identify the questions tagged Star Trek with Lucene, you’d simply run the following query:
Term termToSearch = new Term(“tag”, “star-trek”);
TermQuery starTrekQ = new TermQuery(termToSearch);
searcher.search(starTrekQ);
If we examined the order of the results of this search, they’d come back in default TF-IDF order.
With CustomScoreQuery, we can intercept the matching query and assign a new score to it thus altering the order.
Step 1 Override CustomScoreQuery To Create Our Own Custom Scored Query Class:
(note this code can be found in this github repo)
public class CountingQuery extends CustomScoreQuery { public CountingQuery(Query subQuery) {
super(subQuery);
} protected CustomScoreProvider getCustomScoreProvider(
AtomicReaderContext context) throws IOException {
return new CountingQueryScoreProvider("tag", context);
}
}
Notice the code for “getCustomScoreProvider” this is where we’ll return an object that will provide the magic we need. It takes an AtomicReaderContext, which is a wrapper on an IndexReader. If you recall, this hooks us in to all the data structures available for scoring a document: Lucene’s inverted index, term vectors, etc.
Step 2 Create CustomScoreProvider
The real magic happens in CustomScoreProvider. This is where we’ll rescore the document. I’ll show you a boilerplate implementation before we dig in
public class CountingQueryScoreProvider extends CustomScoreProvider { String _field; public CountingQueryScoreProvider(String field, AtomicReaderContext context) {
super(context);
_field = field;
} public float customScore(int doc, float subQueryScore, float valSrcScores[]) throws IOException {
return (float)(1.0f);
}
}
This CustomScoreProvider rescores all documents by returning a 1.0 score for them, thus negating their default relevancy sort order.
Step 3 Implement Rescoring
With TermVectors on for our field, we can simply loop through and count the tokens in the field:
public float customScore(int doc, float subQueryScore, float valSrcScores[]) throws IOException
{
IndexReader r = context.reader();
Terms tv = r.getTermVector(doc, _field);
TermsEnum termsEnum = null;
termsEnum = tv.iterator(termsEnum);
int numTerms = ;
while((termsEnum.next()) != null) {
numTerms++;
}
return (float)(numTerms);
}
And there you have it, we’ve overridden the score of another query! If you’d like to see a full example, see my “lucene-query-example” repository that has this as well as my custom Lucene query examples.
CustomScoreQuery Vs A Full-Blown Custom Query
Creating a CustomScoreQuery is a much easier thing to do than implementing a complete query. There are A LOT of ins-and-outs for implementing a full-blown Lucene query. So when creating a custom matching behavior isn’t important and you’re only rescoring another Lucene query, CustomScoreQuery is a clear winner. Considering how frequently Lucene based technologies are used for “fuzzy” analytics, I can see using CustomScoreQuery a lot when the regular tricks don’t pan out.
Lucene - CustomScoreQuery 自定义排序的更多相关文章
- Lucene 中自定义排序的实现
使用Lucene来搜索内容,搜索结果的显示顺序当然是比较重要的.Lucene中Build-in的几个排序定义在大多数情况下是不适合我们使用的.要适合自己的应用程序的场景,就只能自定义排序功能,本节我们 ...
- Java集合框架实现自定义排序
Java集合框架针对不同的数据结构提供了多种排序的方法,虽然很多时候我们可以自己实现排序,比如数组等,但是灵活的使用JDK提供的排序方法,可以提高开发效率,而且通常JDK的实现要比自己造的轮子性能更优 ...
- DataTable自定义排序
使用JQ DataTable 的时候,希望某列数据可以进行自定义排序,操作如下:(以中文排序和百分比排序为例) 1:定义排序类型: //百分率排序 jQuery.fn.dataTableExt.oSo ...
- 干货之UICollectionViewFlowLayout自定义排序和拖拽手势
使用UICollectionView,需要使用UICollectionViewLayout控制UICollectionViewCell布局,虽然UICollectionViewLayout提供了高度自 ...
- DataGridView 绑定List集合后实现自定义排序
这里只贴主要代码,dataList是已添加数据的全局变量,绑定数据源 datagridview1.DataSource = dataList,以下是核心代码. 实现点击列表头实现自定义排序 priva ...
- 【转】c++中Vector等STL容器的自定义排序
如果要自己定义STL容器的元素类最好满足STL容器对元素的要求 必须要求: 1.Copy构造函数 2.赋值=操作符 3.能够销毁对象的析构函数 另外: 1. ...
- mysql如何用order by 自定义排序
mysql如何用order by 自定义排序 id name roleId aaa bbb ccc ddd eee ,MySQL可以通过field()函数自定义排序,格式:field(value,st ...
- python 自定义排序函数
自定义排序函数 Python内置的 sorted()函数可对list进行排序: >>>sorted([36, 5, 12, 9, 21]) [5, 9, 12, 21, 36] 但 ...
- 定制对ArrayList的sort方法的自定义排序
java中的ArrayList需要通过collections类的sort方法来进行排序 如果想自定义排序方式则需要有类来实现Comparator接口并重写compare方法 调用sort方法时将Arr ...
随机推荐
- Nginx配置之location模块和proxy模块
1.location指令的用法介绍 Location主要用来匹配url,如:http://www.beyond.com/nice,在这里对于location来说www.beyond.com是域名,/n ...
- about Version Control(版本控制)
what: 版本控制系统是一种软件,它可以帮助您跟踪代码随时间的变化. 在编辑代码时,您告诉版本控制系统对文件进行快照. 版本控制系统将永久保存该快照,以便在以后需要时可以收回它. 如果没有版本控制, ...
- react 路由跳转问题
1.采用Link方法跳转 <Link to="/Index2" > 不要用link,回不来,也不能next </Link> 2.用context控制路由跳转 ...
- Java 源码解析
Object equals方法对比两个对象是否是内存中同一个物理地址 hashCode规定,当两个对象相等时,必须返回相等的hashCode,所以重写equals方法有必要重写hashCode方法 如 ...
- 深入浅出理解 COOKIE MAPPING
转载自:http://www.myttnn.com/digital-marketing/cookie-mapping-introduction/ 在RTB(实时竞价广告,Real-Time-Biddi ...
- IP、端口号、MAC
1.端口 端口是TCP/IP协议簇中,应用层进程与传输层协议实体间的通信接口.端口是操作系统可分配的一种资源:应用程序通过系统调用与某端口绑定后,传输层传给改端口的数据都被相应进程接收,相应进程发给传 ...
- Cassandra Demo--Python操作cassandra
================================================================ 创建keyspace和table CREATE KEYSPACE ex ...
- hasura graphql-engine v1.0.0-alpha30 功能试用
hasura graphql-engine v1.0.0-alpha30 有好多新的功能的添加 环境准备 docker-compose 文件 version: '3.6' services: post ...
- Embedded SW uses STL or not
As the complexity increasing of embedded software, more and more projects/products use C++ as the im ...
- oracle-sql模式匹配
下面是条件 like与regexp_like条件 下面是函数 regexp_instr regexp_replace regexp_substr select * from tis_ft_user_i ...