在某些场景需要做自定义排序(非单值字段排序、非文本相关度排序),除了自己重写collect、weight,可以借助CustomScoreQuery。

场景:根据tag字段中标签的数量进行排序(tag字段中,标签的数量越多得分越高)

public class CustomScoreTest {
public static void main(String[] args) throws IOException {
Directory dir = new RAMDirectory();
Analyzer analyzer = new WhitespaceAnalyzer(Version.LUCENE_4_9);
IndexWriterConfig conf = new IndexWriterConfig(Version.LUCENE_4_9, analyzer);
IndexWriter writer = new IndexWriter(dir, conf);
Document doc1 = new Document();
FieldType type1 = new FieldType();
type1.setIndexed(true);
type1.setStored(true);
type1.setStoreTermVectors(true);
Field field1 = new Field("f1", "fox", type1);
doc1.add(field1);
Field field2 = new Field("tag", "fox1 fox2 fox3 ", type1);
doc1.add(field2);
writer.addDocument(doc1);
//
field1.setStringValue("fox");
field2.setStringValue("fox1");
doc1 = new Document();
doc1.add(field1);
doc1.add(field2);
writer.addDocument(doc1);
//
field1.setStringValue("fox");
field2.setStringValue("fox1 fox2 fox3 fox4");
doc1 = new Document();
doc1.add(field1);
doc1.add(field2);
writer.addDocument(doc1);
//
writer.commit();
//
IndexSearcher searcher = new IndexSearcher(DirectoryReader.open(dir));
Query query = new MatchAllDocsQuery();
CountingQuery customQuery = new CountingQuery(query);
int n = 10;
TopDocs tds = searcher.search(query, n);
ScoreDoc[] sds = tds.scoreDocs;
for (ScoreDoc sd : sds) {
System.out.println(searcher.doc(sd.doc));
}
}
}

测试结果:

Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 >>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1>>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 fox4>>

自定义打分:

public class CountingQuery extends CustomScoreQuery {

    public CountingQuery(Query subQuery) {
super(subQuery);
} protected CustomScoreProvider getCustomScoreProvider(AtomicReaderContext context) throws IOException {
return new CountingQueryScoreProvider(context, "tag");
}
}
public class CountingQueryScoreProvider extends CustomScoreProvider {

    String field;

    public CountingQueryScoreProvider(AtomicReaderContext context) {
super(context);
} public CountingQueryScoreProvider(AtomicReaderContext context, String field) {
super(context);
this.field = field;
} public float customScore(int doc, float subQueryScore, float valSrcScores[]) throws IOException {
IndexReader r = context.reader();
Terms tv = r.getTermVector(doc, field);
TermsEnum termsEnum = null;
int numTerms = 0;
if (tv != null) {
termsEnum = tv.iterator(termsEnum);
while ((termsEnum.next()) != null) {
numTerms++;
}
}
return (float) (numTerms);
} }

使用:

CountingQuery customQuery = new CountingQuery(query);

测试结果如下:

Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 fox4>>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1 fox2 fox3 >>
Document<stored,indexed,tokenized,termVector<f1:fox> stored,indexed,tokenized,termVector<tag:fox1>>

//-----------------------

weight/score/similarity

collector

主要参考

http://opensourceconnections.com/blog/2014/03/12/using-customscorequery-for-custom-solrlucene-scoring/

快照:

One item stands out on that list as a little low-level but not quite as bad as building a custom Lucene query: CustomScoreQuery. When you implement your own Lucene query, you’re taking control of two things:

Matching – what documents should be included in the search results
Scoring – what score should be assigned to a document (and therefore what order should they appear in)
Frequently you’ll find that existing Lucene queries will do fine with matching but you’d like to take control of just the scoring/ordering. That’s what CustomScoreQuery gives you – the ability to wrap another Lucene Query and rescore it.

For example, let’s say you’re searching our favorite dataset – SciFi Stackexchange, A Q&A site dedicated to nerdy SciFi and Fantasy questions. The posts on the site are tagged by topic: “star-trek”, “star-wars”, etc. Lets say for whatever reason we want to search for a tag and order it by the number of tags such that questions with the most tags are sorted to the top.

In this example, a simple TermQuery could be sufficient for matching. To identify the questions tagged Star Trek with Lucene, you’d simply run the following query:

Term termToSearch = new Term(“tag”, “star-trek”);
TermQuery starTrekQ = new TermQuery(termToSearch);
searcher.search(starTrekQ);

If we examined the order of the results of this search, they’d come back in default TF-IDF order.

With CustomScoreQuery, we can intercept the matching query and assign a new score to it thus altering the order.

Step 1 Override CustomScoreQuery To Create Our Own Custom Scored Query Class:

(note this code can be found in this github repo)

public class CountingQuery extends CustomScoreQuery {

public CountingQuery(Query subQuery) {
super(subQuery);
} protected CustomScoreProvider getCustomScoreProvider(
AtomicReaderContext context) throws IOException {
return new CountingQueryScoreProvider("tag", context);
}
}

Notice the code for “getCustomScoreProvider” this is where we’ll return an object that will provide the magic we need. It takes an AtomicReaderContext, which is a wrapper on an IndexReader. If you recall, this hooks us in to all the data structures available for scoring a document: Lucene’s inverted index, term vectors, etc.

Step 2 Create CustomScoreProvider

The real magic happens in CustomScoreProvider. This is where we’ll rescore the document. I’ll show you a boilerplate implementation before we dig in

public class CountingQueryScoreProvider extends CustomScoreProvider {

String _field;

public CountingQueryScoreProvider(String field, AtomicReaderContext context) {
super(context);
_field = field;
} public float customScore(int doc, float subQueryScore, float valSrcScores[]) throws IOException {
return (float)(1.0f);
}
}

This CustomScoreProvider rescores all documents by returning a 1.0 score for them, thus negating their default relevancy sort order.

Step 3 Implement Rescoring

With TermVectors on for our field, we can simply loop through and count the tokens in the field:

public float customScore(int doc, float subQueryScore, float valSrcScores[]) throws IOException
{
IndexReader r = context.reader();
Terms tv = r.getTermVector(doc, _field);
TermsEnum termsEnum = null;
termsEnum = tv.iterator(termsEnum);
int numTerms = ;
while((termsEnum.next()) != null) {
numTerms++;
}
return (float)(numTerms);
}

And there you have it, we’ve overridden the score of another query! If you’d like to see a full example, see my “lucene-query-example” repository that has this as well as my custom Lucene query examples.

CustomScoreQuery Vs A Full-Blown Custom Query

Creating a CustomScoreQuery is a much easier thing to do than implementing a complete query. There are A LOT of ins-and-outs for implementing a full-blown Lucene query. So when creating a custom matching behavior isn’t important and you’re only rescoring another Lucene query, CustomScoreQuery is a clear winner. Considering how frequently Lucene based technologies are used for “fuzzy” analytics, I can see using CustomScoreQuery a lot when the regular tricks don’t pan out.

Lucene - CustomScoreQuery 自定义排序的更多相关文章

  1. Lucene 中自定义排序的实现

    使用Lucene来搜索内容,搜索结果的显示顺序当然是比较重要的.Lucene中Build-in的几个排序定义在大多数情况下是不适合我们使用的.要适合自己的应用程序的场景,就只能自定义排序功能,本节我们 ...

  2. Java集合框架实现自定义排序

    Java集合框架针对不同的数据结构提供了多种排序的方法,虽然很多时候我们可以自己实现排序,比如数组等,但是灵活的使用JDK提供的排序方法,可以提高开发效率,而且通常JDK的实现要比自己造的轮子性能更优 ...

  3. DataTable自定义排序

    使用JQ DataTable 的时候,希望某列数据可以进行自定义排序,操作如下:(以中文排序和百分比排序为例) 1:定义排序类型: //百分率排序 jQuery.fn.dataTableExt.oSo ...

  4. 干货之UICollectionViewFlowLayout自定义排序和拖拽手势

    使用UICollectionView,需要使用UICollectionViewLayout控制UICollectionViewCell布局,虽然UICollectionViewLayout提供了高度自 ...

  5. DataGridView 绑定List集合后实现自定义排序

    这里只贴主要代码,dataList是已添加数据的全局变量,绑定数据源 datagridview1.DataSource = dataList,以下是核心代码. 实现点击列表头实现自定义排序 priva ...

  6. 【转】c++中Vector等STL容器的自定义排序

    如果要自己定义STL容器的元素类最好满足STL容器对元素的要求    必须要求:     1.Copy构造函数     2.赋值=操作符     3.能够销毁对象的析构函数    另外:     1. ...

  7. mysql如何用order by 自定义排序

    mysql如何用order by 自定义排序 id name roleId aaa bbb ccc ddd eee ,MySQL可以通过field()函数自定义排序,格式:field(value,st ...

  8. python 自定义排序函数

    自定义排序函数 Python内置的 sorted()函数可对list进行排序: >>>sorted([36, 5, 12, 9, 21]) [5, 9, 12, 21, 36] 但 ...

  9. 定制对ArrayList的sort方法的自定义排序

    java中的ArrayList需要通过collections类的sort方法来进行排序 如果想自定义排序方式则需要有类来实现Comparator接口并重写compare方法 调用sort方法时将Arr ...

随机推荐

  1. linux通过安装包安装nginx和jdk

    1.安装prce(重定向支持)和openssl(https支持,如果不需要https可以不安装.) yum -y install pcre* yum -y install openssl* 2.下载n ...

  2. Python语言规范

    Lint 对你的代码运行pylint 定义: pylint是一个在Python源代码中查找bug的工具. 对于C和C++这样的不那么动态的(译者注: 原文是less dynamic)语言, 这些bug ...

  3. Python基础( )

    一. 文件修改 f = open("yesterday.txt",'r') f1 = open("yesterday2.txt",'w') for line i ...

  4. AangularJS过滤器详解

    (参考angular权威指南) 过滤器:   用来格式化需要展示给用户的数据: 使用过滤器的方式: (1)$scope.name=$filter("lowercase").(&qu ...

  5. 【Disruptor】之Ringbuffer

    一.Ringbuffer的概念 =>是一个环形数据队列的数据结构 =>嗯,正如名字所说的一样,它是一个环(首尾相接的环),你可以把它用做在不同上下文(线程)间传递数据的buffer. =& ...

  6. 鸟哥的linux私房菜第4版--自学笔记

    -----------------------------------第一章 intel芯片架构 PS:升级电脑还得看看主板是不是适合CPU,主板适合CPU的类型是有限的PS: 现在已经没有北桥了,已 ...

  7. nginx 优化(突破十万并发)

    一般来说nginx配置文件中对优化比较有作用的为以下几项: worker_processes 8; nginx进程数,建议按照cpu数目来指定,一般为它的倍数. worker_cpu_affinity ...

  8. terraform 几个方便的工具

    几个方便的terraform 工具,方便了解terraform terraform-docs 方便的查看资源的信息(支持markdown,json 格式),对于ci/cd 很方便 项目地址 https ...

  9. 使用loki+ mtail + grafana + prometheus server分析应用问题

    loki 是一个方便的类似prometheus 的log 系统,mtail 是一个方便的日志提取工具, 可以暴露为http 服务——支持导出prometheus metrics 环境准备 docker ...

  10. 替换元素(replace,replace_if,replace_copy,replace_copy_if)

    replace 审阅range中的每个元素,把old_value替换为new_value template <class ForwardIterator,class T> void rep ...