POJ2065 SETI 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - POJ2065
题意概括
多组数据,首先输入一个T表示数据组数,然后,每次输入一个质数,表示模数,然后,给出一个长度为n的字符串,第i个位置的字符ch表示f(i)= ch == '*' ? 0 : ch-'a'+1
求解同余方程:(模数为p)
f(1)=10a0+11a1+...+1n-1an-1
f(2)=20a0+21a1+...+2n-1an-1
f(3)=30a0+31a1+...+3n-1an-1
......
f(n)=n0a0+n1a1+...+nn-1an-1
即
f(k)=∑0<=i<=n-1aiki
题解
根据题目的输入构建方程,然后就是高斯消元的裸题了。
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=75;
int T,n,mod,a[N][N],x[N];
char ch[N];
int Pow(int x,int y){
if (!y)
return 1;
int xx=Pow(x,y/2);
xx=xx*xx%mod;
if (y&1)
xx=xx*x%mod;
return xx;
}
int Inv(int x){
return Pow(x,mod-2);
}
void Gauss(){
int k,c;
for (k=c=0;k<n&&c<n;k++,c++){
int Mk=-1;
for (int i=k;i<n;i++)
if (a[i][c]){
Mk=i;
break;
}
if (Mk==-1){
k--;
continue;
}
if (Mk!=k)
for (int i=c;i<=n;i++)
swap(a[Mk][i],a[k][i]);
for (int i=k+1;i<n;i++)
for (int j=n;j>=c;j--)
a[i][j]=(a[i][j]*a[k][c]-a[k][j]*a[i][c])%mod;
}
memset(x,0,sizeof x);
for (int i=n-1;i>=0;i--){
int tmp=a[i][n];
for (int j=i+1;j<n;j++)
tmp=(tmp-a[i][j]*x[j])%mod;
tmp=tmp*Inv(a[i][i])%mod;
x[i]=(tmp+mod)%mod;
}
}
int main(){
scanf("%d",&T);
while (T--){
scanf("%d%s",&mod,ch);
n=strlen(ch);
for (int i=0;i<n;i++)
a[i][n]=ch[i]=='*'?0:((ch[i]-'a'+1)%mod);
for (int i=0;i<n;i++){
a[i][0]=1;
for (int j=1;j<n;j++)
a[i][j]=a[i][j-1]*(i+1)%mod;
}
Gauss();
for (int i=0;i<n;i++)
printf("%d ",x[i]);
puts("");
}
return 0;
}
POJ2065 SETI 高斯消元的更多相关文章
- POJ2065 SETI(高斯消元 同模方程)
(a1 * 1^0 + a2 * 1^1 + ... an * 1^n - 1) % P = f1 .... (a1 * n^0 + a2 * n^1 + ... an - 1 * ...
- poj 2065 SETI 高斯消元
看题就知道要使用高斯消元求解! 代码如下: #include<iostream> #include<algorithm> #include<iomanip> #in ...
- POJ 2065 SETI [高斯消元同余]
题意自己看,反正是裸题... 普通高斯消元全换成模意义下行了 模模模! #include <iostream> #include <cstdio> #include <c ...
- POJ.2065.SETI(高斯消元 模线性方程组)
题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equ ...
- POJ SETI 高斯消元 + 费马小定理
http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...
- UVA 1563 - SETI (高斯消元+逆元)
UVA 1563 - SETI option=com_onlinejudge&Itemid=8&page=show_problem&category=520&probl ...
- POJ 2065 SETI 高斯消元解线性同余方程
题意: 给出mod的大小,以及一个不大于70长度的字符串.每个字符代表一个数字,且为矩阵的增广列.系数矩阵如下 1^0 * a0 + 1^1 * a1 + ... + 1^(n-1) * an-1 = ...
- POJ 2065 SETI (高斯消元 取模)
题目链接 题意: 输入一个素数p和一个字符串s(只包含小写字母和‘*’),字符串中每个字符对应一个数字,'*'对应0,‘a’对应1,‘b’对应2.... 例如str[] = "abc&quo ...
- 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185
最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...
随机推荐
- 电脑爱好——PE系统分区工具 分区时函数错误,报000000001错误 解决方法
1.启动硬盘分区软件diskgenius(一般都是这个分区软件,这个PE系统自带的居多) 2.将现有的分区全部删掉 3.选择菜单栏——“硬盘”——“转换分区表类型为MBR格式”——转换完成 4.快速分 ...
- Linux 开机启动图形界面,shell界面
查看当前启动模式 # systemctl get-default 更改模式命令: systemctl set-default graphical.target由命令行模式更改为图形界面模式 syste ...
- 深度神经网络tricks and tips
1)data augmentation (augment 增加,aug:to increase 词根,同August(奥古斯特即凯撒大帝,自认为最伟大的帝王,他出生在八月,他以自己的名字命名这个月)同 ...
- luogu P3522 [POI2011]TEM-Temperature
这道题暴力做法就是枚举每个起点,然后向后拓展到不能拓展 就像这样(红框是每个位置的取值范围,绿线是你取的值构成的折线) 应该可以发现,左端点往右移的过程中,右端点也只能不动或往右移,所以我们可以每次移 ...
- 【金色】种瓜得瓜,种豆得豆 Gym - 102072H (线段树)
题目链接:https://cn.vjudge.net/problem/Gym-102072H 题目大意:中文题目 具体思路:通过两棵线段树来维护,第一棵线段树来维护当前坐标的点的日增长速度(默认每一年 ...
- js修改url参数,无刷新更换页面url
一.js修改地址栏URL参数 function changeURLPar(destiny, par, par_value) { var pattern = par + '=([^&]*)'; ...
- 使用python中的matplotlib 画图,show后关闭窗口,继续运行命令
使用python中的matplotlib 画图,show后关闭窗口,继续运行命令 在用python中的matplotlib 画图时,show()函数总是要放在最后,且它阻止命令继续往下运行,直到1.0 ...
- 异步编程之使用yield from
异步编程之使用yield from yield from 是 Python3.3 后新加的语言结构.yield from的主要功能是打开双向通道,把最外层的调用方法与最内层的子生成器连接起来.这两者就 ...
- svn的常用命令
svn :看log.版本库.增删.提交 (1)svn up //代码更新到最新版本. (2)svn checkout //将代码checkout出来. (3)svn revert -R ./ //将代 ...
- 『实践』Yalmip获取对偶函数乘子
『实践』Yalmip获取对偶函数乘子 一.sdpsetting设置 Yalmip网站给出的说明 savesolveroutput默认为0,需要设置为1才会保存输出结果. 下面是我模型的约束个数: 二. ...