代码实现分成好多种层级,有的代码只使用标准库实现,有的代码基于其它库实现,有的代码直接调用库中现有的实现。

在本文中,按照不同的层级分别实现PCA

对于分类问题基本任务可以描述如下

x11 x12 x13 x14 y1

x21 x22 x23 x24 y2

x31 x32 x33 x34 y3

......

PCA用于提取样本的主要特征,它只跟属性有关,而跟类别数据无关。也就是说,PCA只跟X有关而跟Y无关。

import numpy as np
from sklearn.decomposition import PCA # 10个样本,每个样本7个属性,现在要取其中的3个属性
train_x = np.random.rand(10, 7)
train_y = np.random.randint(0, 3, (100, 1)) #使用sklearn
p = PCA(n_components=3)
p.fit(train_x, train_y)
train_data = p.transform(train_x) # 使用numpy中的协方差计算、特征值求解来实现
mu = np.mean(train_x, axis=0) # 均值向量
# 协方差矩阵,cov默认是列向量,这里需要T表示将行向量转置称列向量
# 使用参数rowvar=False相当于矩阵转置
A = np.cov(np.asmatrix(train_x - mu).T)
root, vec = np.linalg.eig(A)
ind = np.argsort(root)
transform_matrix = np.asmatrix(vec[:, ind[-3:]])
train_data2 = np.asmatrix(train_x - mu) * transform_matrix # 自己实现协方差计算,只使用numpy中的特征值求解来实现
mu = np.mean(train_x, axis=0)
A = np.dot((train_x - mu).T, (train_x - mu)) / (len(train_x) - 1)
root, vec = np.linalg.eig(A)
# 返回的特征根是无序的,需要进行排序
ind = np.argsort(root)
# vec[:ind[-3:]]或者vec[:ind[-1:-4:-1]]都是可以的
transform_matrix = np.asmatrix(vec[:, ind[-3:]])
train_data3 = np.asmatrix(train_x - mu) * transform_matrix
print(np.sum(train_data - train_data2), np.sum(train_data - train_data3))

PCA实现的更多相关文章

  1. 用scikit-learn学习主成分分析(PCA)

    在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...

  2. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  3. 机器学习基础与实践(三)----数据降维之PCA

    写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...

  4. 数据降维技术(1)—PCA的数据原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  5. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  6. PCA、ZCA白化

    白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低:(ii)所有特征具有相同的方差. 白化又分为PCA白化和ZCA白化,在数据 ...

  7. PCA 协方差矩阵特征向量的计算

    人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或 ...

  8. 【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现

    [引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决 ...

  9. 主成分分析 (PCA) 与其高维度下python实现(简单人脸识别)

    Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可 ...

  10. PCA与LDA的区别与联系

    由于涉及内容较多,这里转载别人的博客: http://blog.csdn.net/sunmenggmail/article/details/8071502 其实主要在于:PCA与LDA的变换矩阵不同, ...

随机推荐

  1. 删除一个存在的RabbitMQ队列

    import sys # pip install kafka-python sys.path.append("/usr/local/software/ELK") from Util ...

  2. 检查Rabbitmq中队列及消息个数,还有清空的方法

    rabbitmqctl list_queues rabbitmqctl purge_queue kafka_queue (不推荐)使用reset方式重置rabbitmq即清空掉rabbitmq所有的队 ...

  3. oracle <> 选不出为null的部分

    比如 tablea 的 字段b 为空,则 select * from tablea where b <> 'Y' 则查不出b is null 的部分

  4. POJ 2229 Sumsets【DP】

    题意:把n拆分为2的幂相加的形式,问有多少种拆分方法. 分析:dp,任何dp一定要注意各个状态来源不能有重复情况.根据奇偶分两种情况,如果n是奇数则与n-1的情况相同.如果n是偶数则还可以分为两种情况 ...

  5. openstack基础环境准备(一)

    一.环境介绍 操作系统 ip地址 主机名 服务 centos7.5 192.168.56.11 linux-node1 控制节点 centos7.5 192.168.56.12 linux-node2 ...

  6. 【noip模拟赛5】细菌

    描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携带了超过 K (1<=K ...

  7. 021 RDD的依赖关系,以及造成的stage的划分

    一:RDD的依赖关系 1.在代码中观察 val data = Array(1, 2, 3, 4, 5) val distData = sc.parallelize(data) val resultRD ...

  8. 日常推荐大神操作,如何再oracle中delete数据后恢复

    http://blog.csdn.net/wangdinghai365/article/details/8593869

  9. BufferedReader的小例子

    注意: BufferedReader只能接受字符流的缓冲区,因为每一个中文需要占据两个字节,所以需要将System.in这个字节输入流变为字符输入流,采用: BufferedReader buf = ...

  10. 卡特兰数 Catalan 笔记

    一.公式 卡特兰数一般公式 令h(0)=1,h(1)=1,catalan数满足递推式.h(n) = h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>= ...