动态规划之 <筷子>
描述
A 先生有很多双筷子。确切的说应该是很多根,因为筷子的长度不一,很难判断出哪两根是一双的。这天,A 先生家里来了K 个客人,A 先生留下他们吃晚饭。加上A 先生,A夫人和他们的孩子小A,共K+3个人。每人需要用一双筷子。A 先生只好清理了一下筷子,共N 根,长度为T1,T2,T3,……,TN。现在他想用这些筷子组合成K+3 双,使每双的筷子长度差的平方和最小。(怎么不是和最小??这要去问A 先生了,呵呵)
输入
共有两行,第一行为两个用空格隔开的整数,表示N,K(1≤N≤100,0<K<50),第二行共有N个用空格隔开的整数,为Ti每个整数为1~50之间的数。
输出
仅一行。如果凑不齐K+3双,输出-1,否则输出长度差平方和的最小值。
样例输入
10 1
1 1 2 3 3 3 4 6 10 20
样例输出
5
【思路】
首先应该想到是dp问题。先sort这样第i和第i-1根就是差距最小的了,
f[i][j]表示前i根组成j双筷子每双长度差的和的最小值。
在考虑第i根筷子时,需要做出的决策即使要不要把这只筷子加入到最优解中去,
若加入,则其与第(i-1)根筷子组成一对,f[i][j]=f[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]),否则f[i][j]=f[i-1][j] .
当然,上述决策过程依赖于以下先验知识:
当从小到大排好的 a,b,c,d 四根筷子组成两双时, ab,cd 这样的组合最优. 就是以上决策时采取的 将第i个筷子跟第i-1根组成一对.
故dp方程这样写
f[i][j]=min(f[i-1][j],f[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]));
【代码】
#include<cstdio>
#include<cstdlib>
#include<climits>
#include<cstring>
#include<algorithm>
using namespace std;
int f[200][200],a[200];
int n,k,i,j;
int min(int a,int b)
{
if(a<b)
return a;
else
return b;
}
void init()
{
scanf("%d%d",&n,&k);
if((k+3)*2>n)cout<<-1<<endl,exit(0);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(&a[1],&a[n]+1);
}
int main()
{
init();
memset(f,0x3f,sizeof(f));
for(i=0;i<=n;i++)f[i][0]=0;
for(i=2;i<=n;i++)
for(j=1;j<=i/2;j++)
f[i][j]=min(f[i-1][j],f[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]));
printf("%d\n",f[n][k+3]);
return 0;
}
动态规划之 <筷子>的更多相关文章
- caioj 1077 动态规划入门(非常规DP1:筷子)
首先可以看出排序之后,最优解肯定是每一对都相邻才是最优的 那么我们就要找构成最优解的相邻组 设f[i][j]是前i个字符,k对的最小值 如果当前这个筷子不取的话,f[i][j] = f[i-1][j] ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
随机推荐
- linux上apache并发数与服务器内存关系计算!
Linunx(本次为ubuntu) apache! 连接数理论上当然是支持越大越好,但要在服务器的能力范围内,这跟服务器的CPU.内存.带宽等都有关系. 查看当前的连接数可以用: ps aux | g ...
- 国内最火5款Java微服务开源项目
目录 1.pig 2.zheng 3.Cloud-Platform 4.SpringBlade 5.Guns 1.pig 开源地址:https://gitee.com/log4j/pig 基于Spri ...
- PDA智能程序访问WebService,报告“未能建立与网络的连接”
其实就是你没又连接上网络.首先下个第三方软件关于vs模拟器连接的.然后根据以下说明操作就可以连接了在确保主机已连上互联网的情况下,按以下步骤设置: 1.打开ActiveSync ,点击“文件”——&g ...
- 【LOJ】#150. 挑战多项式
原题链接 多项式全家桶!快乐!(好像少个除法,不过有除法好像不太快乐) (说真的这是我第一次写exp和开根...水平不行.. 从最基础要实现的操作开始吧.. 多项式取模\(x^n\) 这个..很简单了 ...
- mydumper备份原理和使用方法
mydumper介绍 MySQL自身的mysqldump工具支持单线程工作,依次一个个导出多个表,没有一个并行的机,这就使得它无法迅速的备份数据. mydumper作为一个实用工具,能够良好支持多线程 ...
- jquery attr方法和prop方法获取input的checked属性问题
jquery attr方法和prop方法获取input的checked属性问题 问题:经常使用jQuery插件的attr方法获取checked属性值,获取的值的大小为未定义,此时可以用prop方法 ...
- Codeforces Round #310 (Div. 2)
Problem A: 题目大意:给你一个由0,1组成的字符串,如果有相邻的0和1要消去,问你最后还剩几个字符. 写的时候不想看题意直接看样例,结果我以为是1在前0在后才行,交上去错了..后来仔细 看了 ...
- Mysql mysqld_safe启动与myslqd启动坑
一.用mysqld_safe启动时候无法看到报错信息. 二.用mysqld启动时候可以看到日志实时打印.
- BZOJ1406 [AHOI2007]密码箱 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1406 题意概括 求所有数x,满足 x<n 且 x2≡1 (mod n). n<=2 ...
- Spring Boot 项目实战(一)Maven 多模块项目搭建
一.前言 最近公司项目准备开始重构,框架选定为 Spring Boot ,本篇主要记录了在 IDEA 中搭建 Spring Boot Maven 多模块项目的过程. 二.软件及硬件环境 macOS S ...