深度学习模型融合stacking
当你的深度学习模型变得很多时,选一个确定的模型也是一个头痛的问题。或者你可以把他们都用起来,就进行模型融合。我主要使用stacking和blend方法。先把代码贴出来,大家可以看一下。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve SEED = 222
np.random.seed(SEED)
from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score
from sklearn.svm import SVC,LinearSVC
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier df = pd.read_csv('input.csv') def get_train_test(): # 数据处理 y = 1 * (df.cand_pty_affiliation == "REP")
x = df.drop(['cand_pty_affiliation'],axis=1)
x = pd.get_dummies(x,sparse=True)
x.drop(x.columns[x.std()==0],axis=1,inplace=True)
return train_test_split(x,y,test_size=0.95,random_state=SEED) def get_models(): # 模型定义
nb = GaussianNB()
svc = SVC(C=100,probability=True)
knn = KNeighborsClassifier(n_neighbors=3)
lr = LogisticRegression(C=100,random_state=SEED)
nn = MLPClassifier((80, 10), early_stopping=False, random_state=SEED)
gb = GradientBoostingClassifier(n_estimators =100, random_state = SEED)
rf = RandomForestClassifier(n_estimators=1,max_depth=3,random_state=SEED) models = {'svm':svc,
'knn':knn,
'naive bayes':nb,
'mlp-nn':nn,
'random forest':rf,
'gbm':gb,
'logistic':lr,
}
return models def train_base_learnres(base_learners,inp,out,verbose=True): # 训练基本模型
if verbose:print("fitting models.")
for i,(name,m) in enumerate(base_learners.items()):
if verbose:print("%s..." % name,end=" ",flush=False)
m.fit(inp,out)
if verbose:print("done") def predict_base_learners(pred_base_learners,inp,verbose=True): # 把基本学习器的输出作为融合学习的特征,这里计算特征
p = np.zeros((inp.shape[0],len(pred_base_learners)))
if verbose:print("Generating base learner predictions.")
for i,(name,m) in enumerate(pred_base_learners.items()):
if verbose:print("%s..." % name,end=" ",flush=False)
p_ = m.predict_proba(inp)
p[:,i] = p_[:,1]
if verbose:print("done")
return p def ensemble_predict(base_learners,meta_learner,inp,verbose=True): # 融合学习进行预测
p_pred = predict_base_learners(base_learners,inp,verbose=verbose) # 测试数据必须先经过基本学习器计算特征
return p_pred,meta_learner.predict_proba(p_pred)[:,1] def ensenmble_by_blend(): # blend融合
xtrain_base, xpred_base, ytrain_base, ypred_base = train_test_split(
xtrain, ytrain, test_size=0.5, random_state=SEED
) # 把数据切分成两部分 train_base_learnres(base_learners, xtrain_base, ytrain_base) # 训练基本模型 p_base = predict_base_learners(base_learners, xpred_base) # 把基本学习器的输出作为融合学习的特征,这里计算特征
meta_learner.fit(p_base, ypred_base) # 融合学习器的训练
p_pred, p = ensemble_predict(base_learners, meta_learner, xtest) # 融合学习进行预测
print("\nEnsemble ROC-AUC score: %.3f" % roc_auc_score(ytest, p)) from sklearn.base import clone
def stacking(base_learners,meta_learner,X,y,generator): # stacking进行融合
print("Fitting final base learners...",end="")
train_base_learnres(base_learners,X,y,verbose=False)
print("done") print("Generating cross-validated predictions...")
cv_preds,cv_y = [],[]
for i,(train_inx,test_idx) in enumerate(generator.split(X)):
fold_xtrain,fold_ytrain = X[train_inx,:],y[train_inx]
fold_xtest,fold_ytest = X[test_idx,:],y[test_idx] fold_base_learners = {name:clone(model)
for name,model in base_learners.items()}
train_base_learnres(fold_base_learners,fold_xtrain,fold_ytrain,verbose=False)
fold_P_base = predict_base_learners(fold_base_learners,fold_xtest,verbose=False) cv_preds.append(fold_P_base)
cv_y.append(fold_ytest) print("Fold %i done" %(i+1))
print("CV-predictions done")
cv_preds = np.vstack(cv_preds)
cv_y = np.hstack(cv_y) print("Fitting meta learner...",end="")
meta_learner.fit(cv_preds,cv_y)
print("done") return base_learners,meta_learner def ensemble_by_stack():
from sklearn.model_selection import KFold
cv_base_learners,cv_meta_learner = stacking(
get_models(),clone(meta_learner),xtrain.values,ytrain.values,KFold(2))
P_pred,p = ensemble_predict(cv_base_learners,cv_meta_learner,xtest,verbose=False)
print("\nEnsemble ROC-AUC score: %.3f" %roc_auc_score(ytest,p)) def plot_roc_curve(ytest,p_base_learners,p_ensemble,labels,ens_label):
plt.figure(figsize=(10,8))
plt.plot([0,1],[0,1],'k--')
cm = [plt.cm.rainbow(i)
for i in np.linspace(0,1.0, p_base_learners.shape[1] +1)]
for i in range(p_base_learners.shape[1]):
p = p_base_learners[:,i]
fpr,tpr,_ = roc_curve(ytest,p)
plt.plot(fpr,tpr,label = labels[i],c=cm[i+1])
fpr, tpr, _ = roc_curve(ytest, p_ensemble)
plt.plot(fpr, tpr, label=ens_label, c=cm[0])
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(frameon=False)
plt.show() from mlens.ensemble import SuperLearner
def use_pack():
sl =SuperLearner(
folds=10,random_state=SEED,verbose=2,
# backend="multiprocessing"
)
# Add the base learners and the meta learner
sl.add(list(base_learners.values()),proba=True)
sl.add_meta(meta_learner,proba=True)
# Train the ensemble
sl.fit(xtrain,ytrain)
# Predict the test set
p_sl=sl.predict_proba(xtest) print("\nSuper Learner ROC-AUC score: %.3f" % roc_auc_score(ytest,p_sl[:,1])) if __name__ == "__main__":
xtrain, xtest, ytrain, ytest = get_train_test()
base_learners = get_models() meta_learner = GradientBoostingClassifier(
n_estimators=1000,
loss="exponential",
max_depth=4,
subsample=0.5,
learning_rate=0.005,
random_state=SEED
) # ensenmble_by_blend() # blend进行融合
# ensemble_by_stack() # stack进行融合
use_pack() # 调用包进行融合
深度学习模型融合stacking的更多相关文章
- 深度学习模型stacking模型融合python代码,看了你就会使
话不多说,直接上代码 def stacking_first(train, train_y, test): savepath = './stack_op{}_dt{}_tfidf{}/'.format( ...
- CUDA上深度学习模型量化的自动化优化
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数 ...
- CUDA上的量化深度学习模型的自动化优化
CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参 ...
- AI佳作解读系列(一)——深度学习模型训练痛点及解决方法
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...
- 『高性能模型』Roofline Model与深度学习模型的性能分析
转载自知乎:Roofline Model与深度学习模型的性能分析 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体的计算平台(例如CPU / GPU / ASIC 等 ...
- 利用 TFLearn 快速搭建经典深度学习模型
利用 TFLearn 快速搭建经典深度学习模型 使用 TensorFlow 一个最大的好处是可以用各种运算符(Ops)灵活构建计算图,同时可以支持自定义运算符(见本公众号早期文章<Tenso ...
- Roofline Model与深度学习模型的性能分析
原文链接: https://zhuanlan.zhihu.com/p/34204282 最近在不同的计算平台上验证几种经典深度学习模型的训练和预测性能时,经常遇到模型的实际测试性能表现和自己计算出的复 ...
- 在NLP中深度学习模型何时需要树形结构?
在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for ...
- PyTorch如何构建深度学习模型?
简介 每过一段时间,就会有一个深度学习库被开发,这些深度学习库往往可以改变深度学习领域的景观.Pytorch就是这样一个库. 在过去的一段时间里,我研究了Pytorch,我惊叹于它的操作简易.Pyto ...
随机推荐
- 6种常见的Git错误以及解决的办法
我们都会犯错误,尤其是在使用像Git这样复杂的东西时.如果你是Git的新手,可以学习如何在命令行上开始使用Git.下面介绍如何解决六个最常见的Git错误. Photo by Pawel Janiak ...
- Java日志框架(Commons-logging,SLF4j,Log4j,Logback)
简介 在系统开发中,日志是很重要的一个环节,日志写得好对于我们开发调试,线上问题追踪等都有很大的帮助.但记日志并不是简单的输出信息,需要考虑很多问题,比如日志输出的速度,日志输出对于系统内存,CPU的 ...
- Summary Checklist for Run-Time Kubernetes Security
Here is a convenient checklist summary of the security protections to review for securing Kubernetes ...
- easy_install与pip 区别
作为Python爱好者,如果不知道easy_install或者pip中的任何一个的话,那么...... easy_insall的作用和perl中的cpan,ruby中的gem类似,都提供了在线一键 ...
- linux每日命令(21):find命令之exec
find是我们很常用的一个Linux命令,但是我们一般查找出来的并不仅仅是看看而已,还会有进一步的操作,这个时候exec的作用就显现出来了. 一. exec参数说明: -exec 参数后面跟的是com ...
- 树莓派raspi2-ubuntu meta安装配置指导
首先是硬件准备: 1.树莓派raspi2B------------------------1 2.普通显示器----------------------------1 3.普通pc---------- ...
- Java知多少(44)异常类型
所有异常类型都是内置类Throwable的子类.因此,Throwable在异常类层次结构的顶层.紧接着Throwable下面的是两个把异常分成两个不同分支的子类.一个分支是Exception. 该类用 ...
- 5 款最新的 jQuery 图片裁剪插件
这篇文章主要介绍最新的 5 款 jQuery 图片裁剪插件,可以帮助你轻松的实现你网站需要的图像裁剪功能. Cropit Cropit 是一个 jQuery 插件,支持图像裁剪和缩放功能.Cropit ...
- rqalpha探究 1 setup.py
rqalpha是难得几个好的做量化交易的开源项目,不过由于自己python用的实在不多,看起来还是觉得很复杂. 因此准备抽取出框架,从最简单的搭建. 思路 从setup着手,看一下如何建立一个发布工程 ...
- Angular4学习笔记(八)- ng-content
内容投影 ng-content ng-content是一个占位符,有些类似于router-outlet. 以前举の例子,父组件包含子组件都是直接指明子组件的selector,比如子组件的selecto ...